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Preface

Mathematics Curriculum: Issues, Trends, 
and Future Directions
Why was mathematics curriculum chosen as a theme for the Seventy-second 
NCTM Yearbook? One explanation might be that mathematics curriculum—

… was chosen as the central theme because of the present interest in curricu-
lum revision. Since it should be understood that such revision ought to be a 
continuous process, the discussions herein presented are not final. However, 
they furnish a basis that will help us to find better ways of determining how 
the proper content should be selected, arranged, and presented. (Reeve 1927, 
p. vii)

This is a timely response today, just as it was when it was originally stated by  
William D. Reeve in 1927 in the preface to the Second NCTM Yearbook, Curriculum  
Problems in Teaching Mathematics. It is a reminder that mathematics curriculum 
has long been a topic of keen interest in mathematics education. Some things 
don’t change!
	 One thing is certain today, just as it has been for many decades. Mathemat-
ics curriculum remains a central issue in efforts to improve mathematics learning 
opportunities for students. Although times change, society changes, and people 
change, for many it is difficult to accept change in the mathematics curriculum. 
Terms such as basic, old, new, modern, antiquated, traditional, conservative, 
liberal, contemporary, and reform are commonly used in society. In fact, these 
terms are frequently mentioned in the context of mathematics curriculum. Some 
things don’t change!
	 Returning to history, we find that the developers of the Second Yearbook 
tried to provide a balanced view of mathematics curriculum, as reflected in their 
statement—

The Committee tried to obtain contributors holding many different points of 
view and representing as widely separated sections of the country as possible. 
The result can be labeled neither liberal nor conservative. (Reeve 1927, p. vii)
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Nearly a century ago, the Yearbook Editorial Committee believed that it needed 
to provide a balance between whatever was considered conservative and liberal. 
Some things don’t change!
	 Most controversy about mathematics curriculum centers on either the need 
for change or the lack of change. The need for change, along with visions for 
change, has long been reflected by NCTM in such publications as An Agenda for 
Action (1980), Curriculum and Evaluation Standards for School Mathematics 
(1989), Principles and Standards for School Mathematics (2000), Curriculum 
Focal Points for Prekindergarten through Grade 8 Mathematics (2006), and 
Focus in High School Mathematics: Reasoning and Sense Making (2009). These 
publications have called for curricular change, and several have been met with 
mixed reactions. Although many strongly support the vision of school mathemat-
ics outlined by NCTM, some think the recommendations have gone too far in 
outlining changes, whereas others think they have not gone far enough.
	 Change in any period of time is difficult and creates challenges. In schools, 
mathematics curriculum change affects teachers, students, administrators, and 
parents. Change, particularly for parents, teachers, and administrators, has al-
ways been difficult. This concern is documented in one of the papers in the Fourth 
NCTM Yearbook (Reeve 1929, p. 132):

Tradition has been a hard factor to overcome in modernizing the curriculum in 
mathematics. The difficulty being largely a matter of clinging to the hazy and 
invalid objectives used in teaching the mathematics of many generations ago.

Tradition continues to maintain inertia that is difficult to overcome in changing 
mathematics curriculum. As a result, debates about the direction of mathematics 
curriculum in schools and cities throughout the world continue to this day. Some 
things don’t change!
	 This Yearbook continues in a long line of NCTM Yearbooks, dating back to 
1927, that have addressed various facets of the changing mathematics curricu-
lum. Although some factors such as tradition can inhibit significant change, other 
factors such as policy (e.g., federal No Child Left Behind legislation), societal 
needs (mathematically literate graduates), and technological advances (computer 
software, calculators) foster and accelerate the need for change.
	 This Yearbook, Mathematics Curriculum: Issues, Trends, and Future Direc-
tions, was developed during a period of major curriculum change. The past two 
decades have seen an era of unprecedented mathematics curriculum development 
across grades K–12. In the past year alone, a major state-initiated process for de-
veloping “common core standards” is underway (NGA and CCSSO 2009). With 
forty-eight states (all but Texas and Alaska) and several territories participating 
in the articulation of “college and career-ready” high school graduation expec-
tations and common grades K–12 standards in mathematics and language arts, 
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2010 promises to be a landmark year of discussion and dialogue about mathemat-
ics curriculum.
	 This Yearbook reflects some of the many issues that the field is currently 
discussing, so it serves as both a record of current advances and a summary of 
challenges regarding curriculum. We hope that it will both guide and stimulate 
thinking about where we have been, where we are, and where we need to go.
	 The Yearbook is organized to acknowledge the various forms of curriculum 
that shape the grades K–12 mathematics program, including the following:

	 The Intended Curriculum—Curriculum authorities at the local, state, 
and national level specify particular learning expectations, often delin-
eated by grade, for school mathematics instruction. Often called “cur-
riculum standards,” these learning expectations furnish guidance re-
garding what should be taught and when various mathematical content 
and processes should receive emphasis in the school program. They 
also guide the development of textbooks and assessments designed to 
monitor school programs.

	 The Written (Textbook) Curriculum—Publishers use curriculum stan-
dards to design textbooks and other instructional materials to imple-
ment the intended curriculum. These materials include textbooks 
typically developed to support the day-to-day teaching of mathematics 
over a school semester or academic year of study. They also include 
modules focusing on smaller amounts of mathematical content, work-
books, and computer software.

	 The Implemented Curriculum—Individual teachers make decisions 
every day regarding if and how they will use district-adopted curricu-
lum materials. Therefore students, for example, using the same text-
book may, in fact, have differing opportunities to learn mathematics. 
The implemented curriculum refers to the mathematics that students 
have an opportunity to learn, which is often a function of the district-
adopted textbook and the individual teacher’s preferences.

	 Together, these different forms of curriculum have a direct impact on teach-
ers’ decisions and students’ opportunities to learn. Each has been a focus of in-
tense work over the past three decades (since the publication of An Agenda for 
Action in 1980) as each has served as a lever for school improvement. 
	 So here we are today, one-tenth of the way through the twenty-first century, 
wrestling to improve students’ learning opportunities. This Yearbook includes ar-
ticles focusing on the full range of curriculum issues, as well as articles that offer 
insight into the impact of curriculum on students’ and teachers’ learning. Specifi-
cally, the articles are organized into the following sections:
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	 Curriculum Matters: Looking Back, Looking Forward

	 The Intended Curriculum

	 The Written Curriculum
		  Curriculum Development
		  Textbook Selection

	 The Implemented Curriculum

	 The Impact of Curriculum Materials on Students’ and Teachers’ 
  Learning

Access to Historical Documents on 
Mathematics Curriculum
In addition to sharing information and provoking discussion with the printed ar-
ticles in this Yearbook, the Editorial Panel, under the direction of Tom Romberg, 
has assembled a set of sixty-eight articles, chapters, and relevant publications 
provided in an accompanying CD. These reflect issues and trends in the mathe
matics curriculum in the United States and Canada for the period 1843–1993. 
The articles are organized by time period: nineteenth and early twentieth century, 
mid-twentieth century, modern math era, post–modern math era, and standards-
based era. (No articles more recent than 1993 were considered for inclusion in 
the CD.) For each era, the features of schools are briefly described. Then, as war-
ranted, each era’s documents have been organized by issues or topics of concern 
at that time, such as arithmetic, college-preparatory mathematics, and mathemat-
ics for all.
	 The Editorial Panel strove to set forth a broad, meaningful set of resources 
on the CD to offer significant perspectives on mathematics education curriculum 
philosophy and history. For the past century and a half, a constant dilemma faced 
by those choosing the mathematical content for the school mathematics curricu-
lum has involved how one caters to the needs of the college-bound students who 
will study mathematics at universities (particularly those who will become pro-
fessional mathematicians) and at the same time teaches other students the mathe
matical skills they will need to be productive citizens in a changing society. The 
selected articles reflect how each era dealt with this dilemma on the basis of the 
structure of schools and the social issues of that era.

Summary
For more than a century, mathematics curriculum has been changing, and these 
changes have generated much discussion. In fact, the past thirty years have wit-
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nessed an unprecedented focus on school mathematics in the United States. In 
2009–2010, the momentum is building, with the “common core standards” initia-
tive (NGA and CCSSO 2009) well underway. Prompted by national reports and 
international assessments, attention has focused on the need to raise the quality of 
school mathematics programs for grades K–12 students to be more successful so 
as to compete in the global economy. Curriculum has been central to many of the 
recent school mathematics improvement efforts. As a result, grades K–12 students 
are studying more mathematics, often at an early grade, with a focus on concep-
tual understanding as well as skill development and problem solving. We hope 
the discussion stimulated by this Yearbook will advance our thinking and support 
continued reflection and productive work on the mathematics curriculum.
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Introduction to the CD Collection: 
Classic Publications on the 
Mathematics Curriculum

Thomas A. Romberg

The compact disc (CD) that accompanies the 2010 NCTM Yearbook of the  
National Council of Teachers of Mathematics (NCTM), Mathematics Curriculum: 
Issues, Trends, and Future Directions, contains a set of sixty-eight articles that 
reflect issues and trends in the mathematics curriculum in the United States and 
Canada for the past approximately 150 years. The articles were selected by the 
Editorial Panel as important references on the mathematics curriculum published 
before 1993.

All societies create educational institutions—schools, apprentice programs, and 
so on—to teach students “something.” That “something” may be a collection of 
concepts and skills related to a particular topic in a discipline (e.g., rational num-
bers in mathematics, the Bill of Rights in American history), a common social 
context (e.g., carpentry, tailoring), a valued cultural aspect (e.g., writing poetry, 
playing a musical instrument), and so forth. In each instance the “something” 
to be learned is considered by adults, employers, or society to be an important 
feature of the culture, which needs to be passed on to students so they have the 
opportunity to be productive citizens. The assumption is that if students par-
ticipate in the activities of the institution, they will learn that “something” with 
understanding. Thus, the focus in this set of papers is on the issues surrounding 
the selection of that “something” with respect to mathematics (the mathematical 
content) that students have been expected to learn. The issues include such ques-
tions as what topics should be included, how the topics should be sequenced, and 
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who decides on the content.
The Editorial Panel is aware that additional issues, such as the learning of mathe
matics, how students are assessed, teacher preparation, curriculum implementa-
tion, and others, influence the mathematical content that students experience and 
are expected to learn. However, for this CD, articles on these issues were gener-
ally not included. The exceptions are a few seminal articles by four psycholo-
gists on the learning of mathematics—John Dewey, Edward L. Thorndike, Merl 
Wittrock, and James Greeno. Generally in articles on the learning of mathemat-
ics, content is not an issue. Instead, instruction is the issue. If the curriculum is 
a path involving the mathematical content that society wants students to learn, 
instruction focuses on how students are to travel that path. Lauren Resnick and 
Wendy Ford’s (1981) The Psychology of Mathematics for Instruction is a good 
summary of the history of this line of work.

The Curriculum Papers on the CD
The following two complementary documents by George Stanic and Jeremy Kil-
patrick provide background for the CD. These authors present an overall histori-
cal perspective about mathematics curricula.

Stanic, George M. A., and Jeremy Kilpatrick. “Historical Perspective on 
Problem Solving in the Mathematics Curriculum.” In The Teaching 
and Assessing of Mathematical Problem Solving: Research Agenda 
for Mathematics Education, edited by Randall Charles and Edward 
A. Silver, pp. 1–22. Reston, Va.: National Council of Teachers of 
Mathematics, 1988.

Stanic, George M. A., and Jeremy Kilpatrick. “Mathematics Curriculum 
Reform in the United States: A Historical Perspective.” International 
Journal of Educational Research 17, no. 5 (1992): 407–17.

The remainder of the CD has been organized by time period: nineteenth and early 
twentieth centuries, mid-twen-tieth century, modern math era, post−modern 
math era, and standards-based era. For each era, the features of schools are brief-
ly described. Then within those eras, as warranted, the documents have been 
organized by issues or topics of concern at that time, such as arithmetic, college- 
preparatory mathematics, and mathematics for all.

Nineteenth and Early Twentieth Centuries
In this period, most students attended a common school for six or eight years 
as a consequence of industrial expansion. It was assumed that only a very few 
students would go on to high school. In the common schools, it was assumed that 
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all students needed to study arithmetic (the third “R”). Measurement and “shop-
keeper” computational skills were emphasized. The issues were what and how 
arithmetic should be taught. The following article traces features of the arithme-
tic curriculum from 1850 to 1928:

West, Roscoe L., Charles E. Greene, and William A. Brownell. “The 
Arithmetic Curriculum.” In Report of the Society’s Committee on 
Arithmetic, Twenty-ninth Yearbook of the National Society for 
the Study of Education, edited by Guy M. Whipple, pp. 64–142. 
Bloomington, Ill.: Public School Publishing Co., 1930.

In this era high schools focused on preparing a small number of students for col-
lege. The central issue was whether mathematics courses should be offered, and 
if they were offered, what topics were included. The following article portrays 
how mathematics for high schools became a unified, closed, scientific system in 
mid-nineteenth-century German schools rather than a collection of tools to be 
used to analyze and understand our world. University mathematicians wanted 
young students to understand the discipline rather than how mathematics is used 
in other fields. Thus, the focus was on the perceived needs of students who even-
tually would become professional mathematicians. This concern was prevalent in 
North America at that time and remains an issue to this date.

Jahnke, Hans N. “Origins of School Mathematics in Early Nineteenth 
Century Germany.” Journal of Curriculum Studies 18, no. 1 (1983): 
85–94.

In the United States, the first major call to standardize the secondary school 
mathematics curricula was made in the following “Committee of Ten” report:

National Education Association. “Mathematics.” In Report of the 
Committee of Ten on Secondary School Studies, pp. 104–16. New 
York: American Book Co., 1894.

Nevertheless, the following article by George Stanic demonstrates the important 
ideological battles in this era that focused on the justification of whether mathe
matics was an integral part of school learning:

Stanic, George M. A. “The Growing Crisis in Mathematics Education in 
the Early Twentieth Century.” Journal for Research in Mathematics 
Education 17, no. 3 (May 1986): 190–205.

At the secondary school level, E. H. Moore’s presidential address in 1903 to the 
Mathematical Association of America (MAA) had both immediate and long-term 
influence on the development of curriculum. Among his recommendations was 
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a call for the unification of mathematics in a coherent four-year course around 
the idea of function and the rejection of a completely axiomatic system at the 
secondary school level.

Moore, Eliakim H. “The Foundations of Mathematics.” School Review 11, 
no. 6 (1903): 521–38.

Based on Moore’s address, the following article discussed the various factors that 
can influence the content and design of a high school algebra course. It offered 
general principles for deciding what content should be included in the first year 
of algebra and in the second year of algebra.

Slaught, Herbert E. “What Should Be Emphasized and What Omitted in 
the High-School Course in Algebra?” School Review 16, no. 8 (1908): 
503–16.

The importance of geometry in relation to Moore’s address is discussed in the 
following article:

Betz, William. “The Teaching of Geometry in Its Relation to the Present 
Educational Trend.” School Science and Mathematics 8 (1908): 625–
33.

The following article is a summary of changes in secondary school mathematics 
curriculum in the first quarter of the twentieth century.

Smith, David E. “A General Survey of the Progress of Mathematics in Our 
High Schools in the Last Twenty-five Years.” In The First Yearbook, 
First Yearbook of the National Council of Teachers of Mathematics, 
edited by Charles M. Austin, pp. 1–31. New York: Bureau of 
Publications, Teachers College, Columbia University, 1926.

Finally, in this era the following three works reflect the contrast of psychological 
thinking between progressive and behavioral perspectives. The two articles by 
John Dewey contended that the child and the curriculum are in conflict with one 
another. He offered divergent viewpoints between the studies of subject matter 
and the child’s experience.

Dewey, John. “The Psychological Aspect of the School Curriculum.” 
Educational Review 13 (1897): 356–69.

Dewey, John. The Child and the Curriculum. Chicago: University of 
Chicago Press, 1902.

Edward L. Thorndike presented the behavioral perspective, which has had con-
siderable impact on arithmetic instruction.
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Thorndike, Edward L. “The Constitution of Arithmetical Abilities.” In The 
Psychology of Arithmetic, pp. 51–140. New York: Macmillan Co., 
1922.

Mid-Twentieth Century
The period following World War I, encompassing the Great Depression, and end-
ing in the post–World War II years was characterized by a gradual but dramatic 
change in the structure of schools.1 It was the era when the Scholastic Aptitude 
Test and standardized tests were created. As more students continued schooling 
beyond grade 8, junior high schools, then middle schools, and community col-
leges were created. The high school became what has been called “the shopping 
mall school,” offering a variety of courses for college-bound and non-college-
bound students. Thus, although the mathematics for college-bound students was 
still crucial in secondary schools, concern was growing for the mathematical 
needs of general students.

Arithmetic skills were still the focus in elementary schools. The following article 
demonstrated that there had been only minor changes in the arithmetic curricu-
lum since the article by West, Green, and Brownell some twenty years earlier:

Horn, Ernest. “Arithmetic in the Elementary School Curriculum.” In The 
Teaching of Arithmetic, Fiftieth Yearbook of the National Society for 
the Study of Education, Part 2, edited by Nelson B. Henry, pp. 6–21, 
Chicago: University of Chicago Press, 1951.

However, change in instruction was being examined following progressive no-
tions in the era. In the following article, William Brownell asserted that meaning 
and skill in arithmetic are both important. He defined meaningful habituation as 
the skills that are firmly based on understanding and described how this can be 
accomplished by first developing understanding and then converting that under-
standing to efficient skill.

Brownell, William A. “Meaning and Skill—Maintaining the Balance.” 
Arithmetic Teacher 3, no. 4 (1956): 129–36.

Also, this period saw what is now considered the “traditional mathematics cur-
riculum” become standard in secondary schools. The following document was 
an attempt to standardize the mathematics for students in junior and senior high 
schools preparing to attend college. The notion of a general mathematics pro-
gram for grades 7 and 8 followed by the “layer cake” of algebra and geometry 

1.  An excellent summary of schools in this era is Lawrence A. Cremin, The Transforma-
tion of the School, New York: Vintage Books, Random House, 1961.
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for all secondary school students, and advanced algebra, analytic geometry, and 
trigonometry for mathematics and science students, was recommended. Differ-
ential tracks of mathematics courses became common in this era.

National Committee on Mathematical Requirements. The Reorganization 
of Mathematics in Secondary Education. Washington, D.C.: 
Mathematical Association of America, 1923.

Also, during the Great Depression, many students were kept in secondary schools 
with no intent of going on to higher education—to keep them off the job market. 
The following article is typical of many that describe mathematics for non-
college-bound students in this era:

Reeve, William D. “General Mathematics for the High School: Its Purpose 
and Content.” Educational Administration and Supervision 6 (1920): 
258–73.

It is interesting to note that mathematics as a discipline was still the primary 
focus for college-bound students, whereas a variety of applications became the 
focus for non-college-bound and community college students.

To summarize the curriculum notions of this era, NCTM and MAA prepared the 
following curriculum report. This report addressed such practical considerations 
as consumer mathematics, business mathematics, and shop mathematics, as well 
as courses for college-bound students.

National Council of Teachers of Mathematics (NCTM). The Place of 
Mathematics in Secondary Education: Report of the Joint Commission 
of the Mathematical Association of America and the National Council 
of Teachers of Mathematics. New York: Bureau of Publications, 
Teachers College, Columbia University, 1940. 

Modern Math Era
In the post–World War II and early Cold War era, the organization and structure 
of university mathematics was changed, with emphasis placed on calculus and 
modern algebra. Internationally these changes reflected the work of the French 
Bourbaki group, who had created a systematic description for presenting and 
teaching mathematics in universities.2 As universities made changes, calls came 
for change in the college-preparatory curriculum in mathematics, so that more 

2. A good discussion of this approach to mathematics can be found in Geoffrey  
Howson, Christine Keitel, and Jeremy Kilpatrick, Curriculum Development in Mathematics,  
Cambridge: Cambridge University Press, 1981, pp. 100–104.
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students would be ready to study contemporary mathematics.
The following article typifies the argument for curriculum change of the time. 
Carl Shuster introduced his paper by writing, “In our present scientific, mecha-
nistic, industrial civilization, mathematics is vastly more important than it ever 
was in any former age.” Also, he argued for higher standards and against the 
plague of soft pedagogy. 

Shuster, Carl N. “A Call for Reform in High School Mathematics.” 
American Mathematical Monthly 55, no. 8 (October 1948): 472–75.

The following article by Morris Kline reflects the typical issues about mathemat-
ical content of the school curriculum being addressed early in this era:

Kline, Morris. “The Ancients versus the Moderns: A New Battle of the 
Books.” Mathematics Teacher 51 (October 1958): 418–27.

The document that was central to the emergence of   “modern math” materials was 
produced by a commission of the College Entrance Examination Board (CEEB), 
established in 1955. Drafts of the report were widely discussed at professional 
meetings during the 1950s. Although it is similar to the 1923 MAA document in 
mathematical courses, it emphasized developing basic competence in all students 
and adding the structural aspects of mathematics. 

Commission on Mathematics. Program for College Preparatory 
Mathematics. New York: College Entrance Examination Board, 1959.

NCTM, in support of the Commission on Mathematics, recommended the use of 
set theory throughout all courses, attention to geometry throughout all courses 
but with emphasis on deductive plane geometry in tenth grade, and the formation 
of courses differentiated according to students’ ability.

National Council of Teachers of Mathematics, Secondary-School 
Curriculum Committee. “The Secondary Mathematics Curriculum.” 
Mathematics Teacher 52, no. 5 (May 1959): 389–417.

The catalyst for reform in this era was the “beeping” of the Russian satellite 
Sputnik in 1957. As a consequence the federal government, through the National 
Science Foundation (NSF), allocated funds for the development of new curricu-
lum materials that reflected these recommendations and for appropriate teacher 
retraining in summer and academic institutes.

Five articles from the 1970 National Society for the Study of Education (NSSE) 
Yearbook describe the mathematical content in the “modern math” curricula:

Wilder, R. L. “Historical Background of Innovations in Mathematics 
Curricula.” In Mathematics Education, Sixty-ninth Yearbook of the 
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National Society for the Study of Education, Part 1, edited by Edward 
G. Begle and Herman G. Richey, pp. 7–12. Chicago: University of 
Chicago Press, 1970.

Kelley, John L. “Number Systems.” In Mathematics Education, Sixty-ninth 
Yearbook of the National Society for the Study of Education, Part 
1, edited by Edward G. Begle and Herman G. Richey, pp. 75–130. 
Chicago: University of Chicago Press, 1970.

Dean, Richard A. “Algebraic Systems.” In Mathematics Education, Sixty-
ninth Yearbook of the National Society for the Study of Education, 
Part 1, edited by Edward G. Begle and Herman G. Richey, pp. 131–66. 
Chicago: University of Chicago Press, 1970.

Moredock, H. Stewart. “Geometry and Measurement.” In Mathematics 
Education, Sixty-ninth Yearbook of the National Society for the Study 
of Education, Part 1, edited by Edward G. Begle and Herman G. 
Richey, pp. 167–235. Chicago: University of Chicago Press, 1970.

Buck, R. Creighton. “Functions.” In Mathematics Education, Sixty-ninth 
Yearbook of the National Society for the Study of Education, Part 
1, edited by Edward G. Begle and Herman G. Richey, pp. 236–59. 
Chicago: University of Chicago Press, 1970.

The two principal secondary school curricula that were developed at that time 
were by the University of Illinois Committee on School Mathematics (UICSM) 
and the School Mathematics Study Group (SMSG). The following two articles 
describe these programs:

Beberman, Max. “An Emerging Program of Secondary School 
Mathematics.” In New Curricula, edited by Robert W. Heath, pp. 9–34. 
New York: Harper & Row, 1964.

Wooten, William. “The History and Status of the School Mathematics 
Study Group.” In New Curricula, edited by Robert W. Heath, pp. 35–
53. New York: Harper & Row, 1964.

Three other important documents clarifying the recommended changes in this era 
were the following:

Educational Development Center. Goals for School Mathematics: The 
Report of the Cambridge Conference on School Mathematics. Boston: 
Houghton Mifflin Co., 1963.

Buck, R. Creighton. “Goals for Mathematics Instruction.” American 
Mathematical Monthly 72, no. 9 (1965): 949–56.

Buck, Charles. “What Should High School Geometry Be?” Mathematics 
Teacher 61, no. 5 (1968): 466–71.

Finally, toward the end of the era, Robert Davis described the richness of the work 
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of that era and the variety of pressures that were influencing the mathematics cur-
riculum. The pressures included technology (computers, TV, tape recorders, and 
so on), nonachieving students (dropouts, culturally disadvantaged, and so on), 
the awareness of similar issues in other countries, and revolt against the primitive 
pedagogy in most classrooms (little beyond blackboard, chalk, pen, paper, and 
textbook).

Davis, Robert B. The Changing Curriculum: Mathematics. Washington, 
D.C.: Association for Supervision and Curriculum Development, 
1967.

The following are two summaries of the modern math era. First, in the United 
States, S. Irene Williams examined the degree to which the recommendations 
by the Commission on Mathematics appeared in the courses of study of a select 
group of college-bound students.

Williams, S. Irene. “A Progress Report on the Implementation of the 
Recommendations of the Commission on Mathematics.” Mathematics 
Teacher 63, no. 6 (1970): 461–68.

Second, Geoffrey Howson, Christine Keitel, and Jeremy Kilpatrick’s (1981)  
Curriculum Development in Mathematics is an excellent summary of curriculum 
development internationally in this era and foreshadowed the standards-based era 
a decade later. Unfortunately, NCTM was unable to secure permission to include 
this book on this CD.

Post–Modern Math Era
By the early 1970s there was disillusionment over the impact of modern math, 
and the pressures mentioned by Robert Davis3 became stronger. Morris Kline’s 
Why Johnny Can’t Add, published in 1973, was highly critical of the modern math 
approach to mathematics, and in many minds spelled the end of that era. Unfortu-
nately, we were unable to get permission to include this book on this CD.

Reaction to Kline’s book and many other articles culminated in a “back to the 
basics” movement. Also at this time, criticisms of the NSF-supported humanities 
program Man: A Course of Study because of its emphasis on questioning aspects 
of life, including belief and morality, led to the political cutoff of NSF funds for 
all curriculum development and teacher education.

The dynamics of the modern math era, and the subsequent movement toward 
basic skills, was examined in the following NACOME Report. It also highlighted 

3. See The Changing Curriculum Mathematics (Davis 1967) earlier in this listing.
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the overall impact of the curricula in schools.

National Advisory Committee on Mathematical Education (NACOME). 
“Overview and Analysis of School Mathematics, K–12.” Washington, 
D.C.: Conference Board of the Mathematical Sciences, 1975.

This post−modern math era raised such questions as what statistics should be in 
the curriculum, given its growth as a consequence of computers; how the use of 
computers should be incorporated in the curriculum; and whether students should 
have access to and use the inexpensive handheld calculator in classrooms. At the 
same time, new research information about learning was becoming available. 
We had discovered the contrasting works of such psychologists as Jean Piaget 
and Lev Vygotsky, which led to notions about social cognition and constructivist 
psychology. The article by Merl Wittrock illustrates the growing evolution from 
behaviorism to cognitivism in educational psychology at that time.

Wittrock, Merl C. “A Generative Model of Mathematics Learning.” 
Journal for Research in Mathematics Education 5, no. 4 (November 
1974):  181–96. 

 
This era saw educational research centers founded, new mathematics education 
research journals established, and a mathematics education research community 
evolve. Finally, the era saw achievement data indicating that far too many stu-
dents were not learning and, instead, were dropping out of school. 

Many interesting articles dealing with specific issues about mathematics were pub-
lished in this era. First, the following three examples address issues of basic skills:

Scheffler, Israel. “Basic Mathematical Skills: Some Philosophical and 
Practical Remarks.” In National Institute of Education Conference on 
Basic Mathematical Skills and Learning, vol. 1, pp. 182–89. Euclid, 
Ohio: National Institute of Education, 1975.

Denmark, Thomas, and Henry Kepner, Jr. “Basic Skills in Mathematics:  
A Survey.” Journal for Research in Mathematics Education 11, no. 2 
(March 1980): 105–23.

Hill, Johnny, William Rouse, and James Wesson. “Mathematics Education: 
Reactionary Regression or Responsible Reform?” Elementary School 
Journal 80, no. 2 (November 1979): 76–79.

Second, at the elementary school level during the modern math era, the structural 
ideas based on set theory gradually reached some texts. However, traditional arith-
metic was still the basic content for the elementary school curricula. But fresh 
ideas were beginning to surface. For example, Hans Freudenthal argued for a prac-
tical approach to early mathematics, and the work of the Nuffield Foundation in 
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the United Kingdom was beginning to be noticed by mathematics educators.

Freudenthal, Hans. “Why Teach Mathematics So As to Be Useful?” 
Educational Studies in Mathematics 1, nos. 1−2 (May 1968): 3–8.

Rappaport, David. “The Nuffield Mathematics Project.” Elementary School 
Journal 71, no. 6 (March 1971): 295–308.

Third, one theme during this era involved calls for mathematics—not general 
mathematics—for all students. The following are two articles on the topic:

Damerow, Peter, and Ian Westbury. “Mathematics for All: Problems and 
Implications.” Journal of Curriculum Studies 17, no. 2 (February 
1985): 175–86.

Romberg, Thomas A. “A Common Curriculum for Mathematics.” In 
Individual Differences and the Common Curriculum, edited by Gary 
Fenstermacher and John Goodlad, pp. 121–59. Chicago: National 
Society for the Study of Education, 1983.

By 1980 the growing international mathematics education community serious-
ly examined the curriculum development efforts of the past two decades. An 
international conference jointly organized by the Institute for the Didactics of 
Mathematics (IDM) and the International Mathematics Committee of the Second 
International Mathematics Study Group of the International Association for the 
Evaluation of Educational Achievement (IEA) was held in 1980 to examine the 
fact that, in spite of the rhetoric for change, little change was evident in students’ 
achievement. The following four articles reflect the emerging international con-
cerns about curriculum change and stability:

Westbury, Ian. “Change and Stability in the Curriculum: An Overview of 
the Questions.” In Comparative Studies of Mathematics Curricula: 
Change and Stability 1960–1980, edited by Hans Steiner, pp. 12–36. 
Bielefeld, Federal Republic of Germany: Institut für Didaktik der 
Mathematik der Universität Bielefeld, 1980.

van der Blij, Frederik, Sven Hilding, and Ari I. Weinzweig. “A Synthesis 
of National Reports on Changes in Curricula.” In Comparative Studies 
of Mathematics Curricula: Change and Stability 1960–1980, edited 
by Hans Steiner, pp. 37–54. Bielefeld, Federal Republic of Germany: 
Institut für Didaktik der Mathematik der Universität Bielefeld, 1980.

Robitaille, David F. “Intention, Implementation, Realization: Case Studies 
of the Impact of Curriculum Reform.” In Comparative Studies of 
Mathematics Curricula: Change and Stability 1960–1980, edited by 
Hans Steiner, pp. 90−107. Bielefeld, Federal Republic of Germany: 
Institut für Didaktik der Mathematik der Universität Bielefeld, 1980.

Fey, James T. “The United States’ NSF Studies of Mathematics Education.” 
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In Comparative Studies of Mathematics Curricula: Change and 
Stability 1960–1980, edited by Hans Steiner, pp. 108–22. Bielefeld, 
Federal Republic of Germany: Institut für Didaktik der Mathematik 
der Universität Bielefeld, 1980.

The following two important documents are on issues and recommendations 
about what needed to be done: 

National Council of Teachers of Mathematics (NCTM). An Agenda for 
Action: Recommendations for School Mathematics of the 1980s. 
Reston, Va.: NCTM, 1980.

Hill, Shirley A. “Recommendations for School Mathematics Programs 
of the 1980s.” In Selected Issues in Mathematics Education, edited 
by Mary M. Lindquist, pp. 258–68. Chicago: McCutchan Publishing 
Corporation, 1980.

The next three articles present critiques of the curricula in that era.

Freeman, Donald J., Theresa M. Kuhs, Andrew Porter, Robert Floden, 
William Schmidt, and John Schwille. “Do Textbooks and Tests 
Define a National Curriculum in Elementary School Mathematics?” 
Elementary School Journal 83, no. 5 (May 1983): 501–13.

Flanders, James R. “How Much of the Content in Mathematics Textbooks 
Is New?” Arithmetic Teacher 35, no. 1 (September 1987): 18–25.

Porter, Andrew. “A Curriculum out of Balance: The Case of Elementary 
School Mathematics.” Educational Researcher 18, no. 5 (June/July 
1989): 9–15.

In response to such recommendations and criticisms, several articles posed is-
sues and examples of what could be done. The following four articles represent 
the variety of curricular suggestions at that time:

Freudenthal, Hans. “Mathematics Starting and Staying in Reality.” In 
Proceedings of the USCMP Conference on Mathematics Education 
on Development in School Mathematics Education around the World, 
edited by Izaak Wirszup and Robert Street, pp. 279–95. Reston, Va.: 
National Council of Teachers of Mathematics, 1987.

Wheeler, David. “Mathematization Matters.” For the Learning of 
Mathematics 3, no. 1 (1982): 45–47.

Pollak, Henry O. “The Mathematical Sciences Curriculum K–12: What 
Is Still Fundamental and What Is Not.” Report from The Conference 
Board of the Mathematical Sciences. Washington, D.C.: National 
Science Foundation, 1983.

Hilton, Peter. “Current Trends in Mathematics and Future Trends in 
Mathematics Education.” For the Learning of Mathematics 4, no. 1 
(February 1984): 2–8.
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Standards-Based Era
Although there were recommendations and suggestions about reforming the 
mathematics curricula, the actual catalysts that led to the development of curricu-
lar standards for mathematics were two reports published in 1983 by federal agen-
cies. Both reports called for reform in school mathematics: National Commission 
on Excellence in Education, A Nation at Risk: The Imperative for Educational 
Reform (1983) and National Science Board Commission on Precollege Education 
in Mathematics, Science and Technology, Educating Americans for the 21st Century 
(1983). Economic competitiveness was the underlying concern. This concern re-
flected an awareness of the international data-driven demands of contemporary 
businesses. 

The following articles were produced by the mathematics and mathematics edu-
cation communities as responses to these documents:

Conference Board of the Mathematical Sciences (CBMS). New Goals for 
Mathematical Sciences Education. Washington, D.C.: CBMS, 1984.

Romberg, Thomas A. School Mathematics: Options for the 1990s. 
Chairman’s Report of a Conference. Washington, D.C.: U.S. 
Government Printing Office, 1984.

One consequence of these reports, and the responses, was the creation of the 
Mathematical Sciences Education Board (MSEB) of the National Academy of 
Sciences to oversee and make recommendations about the mathematics curricu-
lum. During the next decade MSEB produced several reports, such as Everybody 
Counts: A Report to the Nation on the Future of Mathematics Education (1990a) 
and Reshaping School Mathematics: A Philosophy and Framework of Curricu-
lum (1990b). Unfortunately, NCTM was unable to secure permission to include 
these documents in this CD.

Zalman Usiskin’s article reflected the calls for change in the secondary school 
curriculum.

Usiskin, Zalman. “We Need Another Revolution in School Mathematics.” 
In The Secondary School Mathematics Curriculum, 1985 Yearbook of 
the National Council of Teachers of Mathematics (NCTM), edited by 
Christian R. Hirsch, pp. 1–21. Reston, Va.: NCTM, 1985.

To complement the calls to reform the secondary school mathematics curricu-
lum, the following two articles examine the elementary school curriculum:

Lindquist, Mary M. “The Elementary School Mathematics Curriculum: 
Issues for Today.” Elementary School Journal 84, no. 5 (May 1984): 
595–608.
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Coburn, Terry G. “The Role of Computation in the Changing Mathematics 
Curriculum.” In New Directions for Elementary School Mathematics, 
edited by Paul R. Trafton, pp. 43–56. Reston, Va.: National Council of 
Teachers of Mathematics, 1989.

Also, although the Cockroft Report from Great Britain focused on the United 
Kingdom, it pointed toward similar reform needed in the United States.

Committee of Inquiry into the Teaching of Mathematics in Schools. 
Mathematics Counts (The Cockroft Report). London: Her Majesty’s 
Stationery Office, 1982.

	 Chapter 6: “Mathematics in the Primary School” (pp. 83–108) 

	 Chapter 9: “Mathematics in the Secondary School” (pp. 128–57)

	 Chapter 11: “Mathematics in the Sixth Form” (pp. 169–82) 

However, the NCTM Standards was the primary curriculum document that 
brought about curricular reform.

National Council of Teachers of Mathematics (NCTM). Curriculum and 
Evaluation Standards for School Mathematics. Reston, Va.: NCTM, 
1989.

	 “Introduction” (pp. 1–12)

	 “Curriculum Standards for Grades K–4” (pp. 15–21)

	 “Curriculum Standards for Grades 5–8” (pp. 65–73)

	 “Curriculum Standards for Grades 9–12” (pp. 123–36)

	 “Next Steps” (pp. 251–58)

Four interesting features of this report make it quite different from those in pre-
vious eras. First, it was produced by a teachers’ organization, not by mathema-
ticians, although mathematicians were involved. Second, its focus was on all 
students, not just college-bound students. Third, the focus in grades K–8 was 
on mathematics, not just arithmetic. And finally, statistics and probability were 
included in the curriculum standards along with number, algebra, measurement, 
and geometry.

One consequence of this report was that the federal government, through the 
National Science Foundation, again provided funds for the development of new 
curriculum materials that reflected these recommendations. All descriptions of 
these programs and their effects are post-1993, our end date for the CD. However, 
many such issues are discussed in this 2010 Yearbook.
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The following article is a summary of the curricular issues being faced in this 
era:

Romberg, Thomas A. “Problematic Features of the School Mathematics 
Curriculum.” In Handbook on Research on Curriculum, edited by Paul 
Jackson, pp. 749–87. New York: Macmillan, 1992.

Many papers have been published on aspects of the impact of this era since 1993. 
However, the following three articles should be of interest:

Kamens, David H., and Aaron Benavot. “Elite Knowledge for the Masses: 
The Origins and Spread of Mathematics and Science Education 
in National Curricula.” American Journal of Education 99, no. 2 
(February 1991): 137–80.

Steffe, Leslie P. “Mathematics Curriculum Design: A Constructivist’s 
Perspective.” In Transforming Children’s Mathematics Education: 
International Perspectives, edited by Leslie P. Steffe and Terry L. 
Wood, pp. 389–98. Hillsdale, N.J.: Lawrence Erlbaum Associates, 
1990.

Wheeler, David. “Knowledge at the Crossroads.” For the Learning of 
Mathematics 13, no. 1 (1993): 53–54.

To complement the NCTM Curriculum Standards, James Greeno presented a 
contemporary view of the psychology of mathematics instruction. He argued 
that instruction will help students develop understanding when a mathematical 
domain is thought of as an environment, with resources at various places in the 
domain. In this metaphor, “knowing” is knowing your way around in the environ-
ment and knowing how to use its resources.

Greeno, James. “Number Sense as Situated Knowing in a Conceptual 
Domain.” Journal for Research in Mathematics Education 22, no. 3 (March 
1991): 170–218.

Summary
The Editorial Panel for the 2010 NCTM Yearbook strove to provide a broad, 
meaningful set of resources on the CD to provide significant perspectives on the 
philosophy and history of the curriculum for mathematics education. For the past 
century and a half, the dilemma facing those faced with choosing the mathe
matical content for the school mathematics curriculum involves how one caters 
to needs of the college-bound students who will study mathematics at universi-
ties (particularly those who will become professional mathematicians) and at the 
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same time provides the general student with the mathematical skills he or she will 
need to be a productive citizen in a changing society. The selected articles reflect 
how this dilemma was dealt with during five eras on the basis of the structure of 
schools and the social issues of that era. We hope that readers find it useful.
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The Current State of the School 
Mathematics Curriculum

Zalman Usiskin

R ecently, I was speaking at a conference in Los Angeles and rented a car to 
get from the airport to the conference hotel. In preparation, two days earlier 

I had downloaded directions from Google Maps. But I had even more guidance 
than that, for with me was a global positioning system (GPS) that I had recently 
received as a present. Before I left home I had looked over the GPS quickly and 
realized that it was quite easy to use. So, in the parking lot, sitting in my rental 
car, I entered the hotel address. Then, immediately, I was faced with a dilemma. 
The GPS advice for the first turn out of the parking lot was in a different direc-
tion from the advice given me by Google Maps. Google Maps had shown a 
reasonably familiar route—from one freeway to another to a third—but I had 
some time, and so I decided to follow the GPS directions. The GPS took me on a 
zigzag route through main streets, never more than 1.7 miles on any street. I was 
afraid that the GPS did not know my destination, but it kept me going generally 
in the direction of the hotel. Ultimately, I arrived at the hotel without ever being 
on a freeway, in very close to the optimal time that Google had estimated.
	 How similar that situation is to working with new curriculum materials in 
schools! Both situations sometimes involve taking new paths to get to places we 
want to go. Sometimes we are familiar with our destination; sometimes not.
	 Mathematics is a multidimensional universe, and those who write curricu-
lum materials are engineers, building roads through that universe. Curriculum 
supervisors are travel agents, planning trips on those roads. Teachers are bus 
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drivers on these roads, and students are the bus passengers. As bus drivers, teach-
ers can make the bus stop and look at sites, or they can whiz by them. Teach-
ers may be under the authority of school officials who decide what things are 
important enough for students to get out and touch and what things might be 
bypassed. Many curriculum materials authors simply repave roads that were first 
constructed decades, if not centuries, ago. Some of the roads we take, however—
for instance into the world of statistics—are new roads. At times they are uneven 
because they are unpaved or pass through uncharted territory. Some of the mate-
rials used to pave the roads, such as spreadsheets, interactive geometry systems, 
and computer algebra systems (CAS), are also new. Many people think riding 
over roads using those materials is a smoother ride and enables students to see 
and touch more of the mathematical countryside. Others believe that a rough ride 
helps one appreciate the landscape.
	 There are many possible roads through the world of mathematics, and de-
spite our search for better pathways, choices still remain. Some students need 
to spend time on things that other students do not. Some students benefit from 
detours that motivate and capture their attention. Furthermore, just as there are 
individual differences among students, there are individual differences among 
teachers, and what works for one teacher may not work for another. In designing 
and implementing curriculum—as in building roads—we need to have enough 
instructional options, enough stops along the way, enough side trips or detours so 
that a teacher can choose what she or he deems best for the students.
	 How do we decide what roads to take through this world of mathematics? 
In many states, schools and teachers pay attention to their state’s mathematics 
framework because high-stakes state-level tests are based on that framework. 
Compared with other subjects in the school curriculum, these state frameworks 
have quite a bit in common. A ninth-grade teacher of mathematics in any state 
can be sure that her students have studied whole numbers, fractions, decimals, 
percent, and basic units of measurement. Compare this situation with a ninth-
grade science teacher, who typically cannot predict with assurance that her stu-
dents have studied any particular topic. Yet, as Reys (2006) pointed out, substan-
tial differences exist in the mathematics frameworks among the fifty states and 
the District of Columbia.
	 Given these differences, in a search for regularity it is natural to examine 
documents at the national level. The most prominent documents have come from 
the National Council of Teachers of Mathematics (2000, 2006, 2009). Project 
Achieve, a Washington, D.C.−based group with backing from governors of many 
states, has also developed detailed standards for grades K–8 and high school. The 
American Statistical Association has published Guidelines for Assessment and 
Instruction in Statistics Education (GAISE) (Franklin et al. 2007), a set of rec-
ommendations for all the grades K–12. The College Board (2006) has produced 
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standards for high school mathematics. The National Mathematics Advisory 
Panel (NMAP 2008), supported by the U.S. Department of Education, has made 
recommendations for school mathematics, giving particular attention to getting 
students ready for algebra.
	 These national reports have influenced state frameworks and textbooks to 
different degrees. Some states have realigned their grades K–8 frameworks on 
the basis of NCTM’s Curriculum Focal Points (2006). Some have based their 
frameworks on the Project Achieve model. But, like the state documents they 
influence, these national reports do not always agree with one another, and some 
of the disagreements are major. For instance, the GAISE recommendations as-
sume technology, whereas the NMAP recommendations eschew technology. 
Sometimes even two documents from the same group do not agree. For example, 
Achieve’s test after second-year algebra follows quite different guidelines than its 
recommended high school curriculum (Achieve, Inc. 2004, 2008).
	 It is ironic that the mathematics curriculum is perhaps the most consistent 
curriculum of all subjects in schools (with the possible exception of foreign lan-
guages), yet its variations cause disputes that often are acrimonious. All mathe
matics teachers are beleaguered by conflicting expectations from their district or 
school’s syllabus, the adopted textbook, state tests, parental expectations, local 
customs, and their own judgments. Teachers at higher levels can add to these the 
variety of expectations of college entrance tests and college placement tests. Add 
to these the individual differences students and teachers bring in background, 
achievement, and motivation, and it is easy to understand why the analysis of the 
ideal or intended curriculum is as much an art as a science.
	 In this environment, we would naturally expect to find a variety of curricu-
lum materials. Although as this essay is being written, the United States has only 
three large publishers of school mathematics materials1, a mathematics teacher 
can obtain textbooks and other materials from a number of smaller publishers2, 
from software and hardware manufacturers3, and from a host of nonprofit orga-
nizations. In addition to the basal textbook offerings, these curricular materials 
may be designed for specific purposes: skill remediation, test preparation, com-
petitions, problem-solving practice, software enhancement, and hands-on activi-
ties. They may be in print form; on CDs; or downloadable from, or reachable 
only on, the Internet. At no time in history has a greater variety of curriculum 
materials been available.

1. They are McGraw-Hill (including Macmillan, Glencoe, SRA, Everyday Learning, Laidlaw,  
Merrill, Open Court, Wright Group); Houghton Mifflin/Harcourt (including also McDougal-Littell, 
Heath, Holt, Saxon, Heinemann); and Pearson (including Scott Foresman, Prentice Hall, Addison-
Wesley, Ginn, Silver Burdette, Dale Seymour, and Globe-Fearon).

2. For example, ETA/Cuisenaire, Heinemann, It’s About Time, Kendall/Hunt, Key Curriculum Press, 
Scholastic, and William Sadlier.

3. For example, Cabrilog, Casio, Hewlett-Packard, and Texas Instruments.
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Making Sense of a Complex  
Situation
	 When results in mathematics conflict, we know that they must have origi-
nated from different assumptions. The sum of the measures of a triangle is 180° 
in Euclidean geometry but greater than 180° in spherical geometry, so spherical 
geometry must work from different assumptions than Euclidean geometry does. 
If one statistical analysis shows that sample A outperforms sample B, and another 
analysis of the same data shows the opposite, then the two analyses must be us-
ing different procedures. One way to try to make sense of the complex nature of 
today’s national reports, state frameworks, textbooks, and other materials is to 
examine the assumptions underlying them.
	 As a curriculum developer, I realize that the decisions I make about what 
should be in the mathematics curriculum—and how that content should be or-
ganized, presented, and taught—are based on my beliefs about the nature and 
purposes of schooling, about the roles of teachers, about students, and about 
curriculum. These beliefs are sometimes based on data and sometimes on experi-
ence. Yet sometimes they are so strong that data will not influence them. Virtually 
all individuals and organizations charged with trying to improve the mathematics 
curriculum operate in the same way. Prior to beginning the work, the group fol-
lows the belief that either we are on the right track and need to continue what we 
are doing, or (more often, because it is easier to sway policy by asserting there 
is a disaster) we are performing horribly and the security and well-being of our 
nation are at stake.
	 How can one group think that we are on the right track while another thinks 
we have gone astray? Why can some people be adamant in wanting to emphasize 
basic skills while others wish to devote most of the time to solving problems? 
Why are many people in favor of using calculators in elementary school and CAS 
in high school while others abhor the use of these devices in school? I would like 
to offer four reasons:

1.	 Conflicting views of what is appropriate school mathematics 

2.	 Conflicting beliefs about the purpose of schooling and the roles of the 
teacher

3.	 Differing views of past and current mathematics education reform  
efforts

4.	 The difficulty of deciding which curriculum is better or best

Each of these reasons is itself complex.
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Conflicting Views of What Is Appropriate 
School Mathematics
	 Six conflicts are identified here. They run to the very heart of the subject.

Pure versus Applied Mathematics
	 Which should take priority, abstract (pure) mathematics or its applications? 
Pure mathematics is one of the most beautiful of all areas of study. This beauty 
is found in the geometric pictures of fractals or rose curves; in the elegance of 
structures (groups, fields, rings, etc.) that permeate higher algebra and analysis; 
in the astounding properties of numbers, figures, and functions; and in the in-
terrelationships among the various areas of mathematics. But mathematics is a 
fixture of the school curriculum not because of its beauty but because of its ap-
plications. Mathematics arose from a need to count and measure real phenomena, 
from the areas of lands to the prediction of eclipses, and mathematics remains 
one of the most applicable of school subjects in everyday life and in the work-
place. Pure mathematics provides results that may apply to many situations, but 
many of those situations are inaccessible to grades K–12 students. Applications 
focus on specific contexts, but if they are not generalized, a student will not see 
the power of the underlying mathematics. Curricula differ significantly on the 
relative importance given to pure versus applied mathematics.

Deduction versus Induction versus  
Statistical Inference
	 What relative importance should be given to (formal) deduction, (informal) 
induction, and statistical (probabilistic) reasoning? Deduction is the hallmark of 
mathematical thinking and provides results with 100% certainty. For example, 
we know there are infinitely many primes not because we have made a list of 
them (we cannot do so) but because we (or others we trust) have proved there 
are infinitely many primes. Induction, though not valid for proving propositions, 
gives specific examples from which we conjecture results and, for many young 
students, is more believable than a deductive proof. We tabulate the number of 
primes from 1 to 10n and find that there continue to be primes among the larger 
numbers. Statistical inference, even in a theoretical sense and in its best manifes-
tation, offers results with a probability of belief. We sample some large numbers 
at random, test them for primality, and find there are some primes. Each of these 
ways of thinking is important. Curricula differ in the relative attention they give 
to these ways.
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From Algorithms to Creative Problem Solving
	 What relative emphasis should be placed on teaching algorithms versus 
teaching creativity? For many decades, psychologists have used mathematics as 
a context when they want to study simple, well-defined tasks such as short-term 
memory, as in recalling random digits, or when they want to study rule follow-
ing and algorithms. Mathematics is filled with algorithms; its history includes 
finding simpler ways to do operations with arithmetic, more efficient procedures 
for solving equations, and thousands of formulas for calculating everything from 
areas to mortgage costs. Additionally, psychologists have used mathematics 
when they want to study problem solving and creativity, for no discipline is so 
filled with well-identified problems and in no discipline are there more difficult 
problems than in mathematics. People need to be able to follow algorithms, and 
people also need to be creative and attack problems they have not seen before. To 
what extent should curricula focus on simple, well-defined mathematical tasks as 
opposed to emphasize problems unfamiliar to students?

Fluency versus Flippancy
	 Can we achieve fluency without flippancy? The NMAP panel and the National 
Research Council report Adding It Up (2001) emphasize the need for fluency and 
automaticity in the application of skills. Fluency refers to knowing when to apply 
an algorithm and being able to apply it flexibly, accurately, and efficiently. Auto-
maticity is the execution of a procedure “without conscious thought” (National 
Research Council 2001, p. 351). This supports the view of three contemporary 
mathematicians, who wrote, “The ultimate goal of mathematics is to eliminate 
all need for intelligent thought” (Graham, Knuth, and Patashnik 1989, p. 56). Yet 
we also know that when students apply algorithms without thinking, they do not 
realize when they come up with nonsense results. Fluency without thinking is 
flippancy; how can we best attain fluency without grooming people who do not 
understand what they are doing?

Culture Free versus Culture Dependent
	 How much should the curriculum reflect our culture(s)? Mathematics is a 
universal language. Visit a mathematics classroom in China or Italy or Algeria 
or Brazil, and you will likely be able to understand what mathematics is being 
taught even if you cannot understand the written or spoken everyday language. 
But you will not see inches or ounces or others of the measurements used in the 
United States; you are unlikely to see examples from American football or from 
mortgages, but you will likely see subtle and not-so-subtle differences in the 
algorithms children use in arithmetic. You are sure to see differences in the defi-
nitions of common mathematical terms, for these differences occur even within 
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the same country (Usiskin and Griffin 2008). To what extent should mathematics 
materials reflect the mathematics unique to a particular country or to the ethnici-
ties of its students?

Hard versus Easy
	 Is mathematics inherently difficult, or is a major goal of mathematics to make 
things easy? Some curricula emphasize difficult tasks more than others. Must 
mathematics be hard in order to be good? Those who use today’s powerful calcu-
lator and computer technology believe that use helps students by making difficult 
problems more accessible. Others believe technology use hurts students by short-
cutting the routes by which those problems can be solved. Are these technological 
developments merely the current manifestations of a long history of the develop-
ment of algorithms in mathematics to make it easier to get answers to problems, or 
are they new developments deleterious to the entire discipline because they enable 
students to obtain answers without work? Calculators first appeared almost forty 
years ago and are still not a staple of elementary school classrooms. Today’s CAS 
technology provides the algebra equivalent. Curricula around the world differ sig-
nificantly in the extent to which they employ technology.

Conflicting Beliefs about the Purpose of 
Schooling and the Roles of the Teacher
	 Attitudes toward the purposes of public schooling vary widely. A small but 
significant minority of parents fear public schooling not because of concerns for 
the physical safety of their children, but because of what the children might learn 
in school. Many parents send their children to religious or other day schools be-
cause they do not want their children to learn about other religions and practices 
that differ from their beliefs. Other parents homeschool their children for the 
same reason. Some parents do not have that choice, and they press their local 
public schools not to deal with such issues as sex education or evolution.
	 For these parents, the school exists to transmit the best of the learned cul-
ture. Schools do not exist to expand students’ minds because such expansion is 
dangerous, leading to unwise behaviors (sex, drugs, etc.) and heresy. This belief 
plays out in the mathematics classroom in a desire not to have students invent 
new procedures or engage in creative activities. It is a major reason why schools 
run by fundamentalists in almost any religion tend to focus on learning algo-
rithms rather than on creative problem solving, and why constructivism is a dirty 
word in some places.
	 Is the purpose of schooling to bring all students to approximately the same 
level of performance, focusing more on those who need more help, or is the 
purpose of schooling to nurture those who are likely to perform better? Is the 
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purpose of schooling to compensate for those things that parents cannot provide 
or have not provided, or is the purpose of schooling to enhance what parents have 
provided? Is the purpose of schooling to learn about your own culture, or is the 
purpose of schooling to learn about other cultures different from yours? Is the 
purpose of schooling to teach cooperation in a world that is perceived as needing 
to be cooperative, or is it to teach competition for a world that is perceived to be 
competitive?
	 Each of these questions affects the mathematics curriculum—the level of 
difficulty of the content, the choice of contexts for applications of the mathemat-
ics, the extent to which students are asked to explore, and the ways in which 
schools group students.
	 Each of these issues is dealt with either explicitly or implicitly in the math-
ematics classroom, for they strongly influence how a teacher conducts a class. 
Will there be cooperative learning groups? Will considerable time be spent going 
over material a second time when students do not seem to have grasped it the first 
time? Will emphasis be placed on applying the mathematical content in real situ-
ations? Should the teacher show students how to do the problems and then see if 
they got it, or should the teacher let students discover how to do the problems?
	 Because the conflicting answers to these questions are based on belief, 
they are difficult if not impossible to resolve by a single curriculum. One of the 
strengths of our democratic system is that we allow a variety of practices to occur 
simultaneously.

Differing Views of Past and Current 
Mathematics Education Reform  
Efforts
	 Major efforts to improve mathematics education in schools over the past 
five decades have been well documented (see the CD accompanying this vol-
ume). However, people interpret these efforts and their impact quite differently. 
In fact, some mistakenly recall a past that they believe was much rosier than data  
indicates.
	 For example, the NMAP report (2008, p. 1) begins with this statement:

During most of the 20th century, the United States possessed peerless mathe
matical prowess—not just as measured by the depth and number of the mathe
matical specialists who practiced here but also by the scale and quality of 
its engineering, science, and financial leadership, and even by the extent of 
mathematical education in its broad population. But without substantial and 
sustained changes to its educational system, the United States will relinquish 
its leadership in the 21st century.
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If you believe this statement, then you ask what happened in the latter part of the 
twentieth century that caused the “peerless mathematical prowess” to decline. 
Some outspoken critiques of school mathematics believe that the decline was due 
to schools’ following the NCTM Curriculum and Evaluation Standards (1989), 
resulting in an overuse of technology and a lack of sufficient paper-and-pencil 
arithmetic and algebraic skills (Wu 1996).
	 This view of history is quite different from my view and the view of many 
in the mathematics education establishment. For us, statements like those in the 
NMAP report are revisionist history. In fact, the past fifty years have seen two 
revolutions in the school mathematics curriculum. The first (often called “new 
math”) was an attempt to modernize the school mathematics curriculum and was 
not limited to the United States. In France, it was directly influenced by the think-
ing of the Bourbaki mathematicians. In the United States, the revolution was 
propelled by the Soviet Union’s sending of Sputnik into space in 1957. In both 
the United States and Canada, this revolution was led by mathematicians who 
brought such structures such as field properties and groups and matrices into 
the grades K–12 mathematics curriculum; geometry into the elementary school; 
functions as the primary concept of study in later high school mathematics; and 
calculus, traditionally a sophomore college subject, into the freshman year.
	 The “new math” was not a single curriculum or even a curriculum based 
on one set of recommendations. Some elementary school programs emphasized 
new content, whereas others emphasized discovery and creativity (Deans 1963). 
Secondary-school-level programs also differed significantly, but all emphasized 
connections among topics, using unifying concepts, such as sets, structure, prop-
erties, deduction, and the use of graphical representations (NCTM 1961).
	 The underlying causes of the second revolution were (1) the continuing 
desire to improve the mathematics performance of students, as represented in 
such reports as A Nation at Risk (National Commission on Excellence in Ed-
ucation 1983); (2) the need to expand the mathematics curriculum, as recom-
mended by the College Board and the Conference Board of the Mathematical 
Sciences; and (3) the need for a society in which no one was left out of a quality 
mathematics education, a doctrine elucidated in the report Everybody Counts 
(National Research Council 1989). This revolution was propelled by the publica-
tion of NCTM’s Curriculum and Evaluation Standards (1989) and Professional  
Standards for Teaching Mathematics (1991). For this reason, it might be termed 
the “standards revolution.”
	 Beginning in 1990, the National Science Foundation invested heavily in the 
development of more than a dozen multiyear curricula to implement the stan-
dards and, as in the new math era, the products had both similarities and signifi-
cant differences. Summaries of the work of these projects can be found in many 
places (Usiskin 1997; Senk and Thompson 2003; Hirsch 2007).
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	 In general, the standards revolution brought algebra and some data analysis 
into the elementary school, algebra into grade 8 and earlier for many students, 
applications into the algebra and geometry curricula, graphing calculators into 
the study of functions, and a major increase in the number of high school stu-
dents taking calculus. It promoted active learning, classroom discourse, alternate 
algorithms, and multiple ways of approaching problems.
	 Virtually all evidence is that, overall, the NCTM Standards improved perfor-
mance and led to significant increases in the amount and level of mathematics 
taken by high school students. From 1990 to 2004, the National Assessment aver-
age scale score of 9-year-olds on its longitudinal assessment increased from 230 
to 241; of 13-year-olds, from 270 to 281. National Assessment scores of 17-year-
olds changed from 305 to 307, an insignificant increase, but mean mathematics 
scores of seniors on the SAT mathematics test increased from 501 in 1990 to 
peak at 520 in 2005, and on the ACT increased from 19.9 in 1990 to 20.7 in 2005 
despite increases in the percent of the age group taking those tests.
	 Certainly some of this improvement is due to the startling increases in en-
rollment in college-preparatory mathematics courses that began in the 1980s and 
carried through the 1990s, as seen in table 1.1.

Table 1.1  
Percent of High School Graduates Who Completed Different Levels of  
Mathematics Courses in 1982, 1992, and 2004

Level of mathematics 1982 1992 2004

No math or low academic math 24.9 12.9 5.2

Algebra 1/plane geometry 30.6 22.6 18.1

Algebra 2 19.2 26.4 25.7

Algebra 2/trigonometry/analytic geometry 15.6 16.4 18.0

Precalculus 4.8 11.0 18.9

Calculus 5.9 10.7 14.1

Source:  Dalton et al. 2007, p. 13

	 An examination of table 1.1 shows that the kinds of students who would fin-
ish their high school mathematics with algebra 1 or a geometry course in 1982 
were all taking algebra 2 in 2004; students who finished with algebra 2 in 1982 
were all taking precalculus in 2004, and some were taking calculus. Experienced 
teachers of the later high school courses who asserted that their students were 
not like the students of years gone by are accurate, and it is no wonder that the 
content or difficulty of these courses was modified by schools and teachers to fit 
a larger percent of the population.
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	 The rebellion to the standards revolution, leading to what has been called 
the “math wars,” was strikingly similar to the back-to-basics rebellion of the 
1970s, even though these two revolutions were quite different in their origins and 
in what they brought to the mathematics classroom. Both rebellions espoused 
the view that the most important aspects of school mathematics are paper-and-
pencil arithmetic skills at the elementary school level and algebraic skills at the 
high school level. Both rebellions ignored, if not decried, the use of technology 
in the learning of mathematics. Both rebellions viewed a foreign country as hav-
ing implemented a curriculum that ostensibly shows that performance can be 
improved4. Both rebellions viewed mathematics as culture-free and wanted ap-
plications to be studied after skills are developed, not used to develop the skills. 
Both took advantage of concurrent movements to atomize the goals of school 
mathematics.5 

The Difficulty of Deciding Which 
Curriculum Is Better or Best
	 The situations in which schools make decisions about which curriculum ma-
terials (e.g., textbooks) are best vary significantly from place to place (Hudson, 
Lahann, and Lee 2009). In many state-adoption states and in some large school 
districts, the broad (and sometimes the specific) thrusts of the curriculum have 
been determined: the materials for course X must have this content; they cannot 
have that content; etc. Then a school’s decision regarding which curriculum is 
best for its students is not made on beliefs like those mentioned earlier but on 
which books or other materials best implement the beliefs imposed by the state. 
In other locales, schools have the option of choosing any materials they wish, and 
they have to consider what might constitute an ideal curriculum.
	 In all instances, schools must decide on some curriculum to implement and 
some materials to purchase, usually based on a textbook. These decisions are 
always difficult to make. Rarely have any of the curricula been tested, since the 
length of time between the announcement of state adoption guidelines and the 
deadline for submitting materials is seldom even close to the three-year mini-
mum that it takes to write materials, give them a year of testing, and revise them 
based on that testing (Reys and Reys 2006). Thus, the only materials that are 
tested before publication tend to be those funded by noncommercial ventures 
that are then picked up by a publisher for commercial publication. Consequently, 
the evidence that exists to make a decision is most often just belief supported by 

4. The Soviet Union in the time of new math; Singapore currently.

5. In the back-to-basics era, the atomization came from a desire for behavioral objectives; 
in the current era, the atomization has come from provisions of the No Child Left Behind 
statute.
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anecdote. As a result, teachers are often asked to teach using materials that no 
one has tested, following guidelines that reflect dreams more than reality. Only 
teaching and testing can determine whether explanations are clear, material is 
organized in a cohesive manner, questions are appropriate, and the teacher’ edi-
tion gives enough suggestions for the diverse sets of students likely to use the 
materials, or whether the additional materials available provide the support for 
which they are intended.
	 A decade ago, the number of studies that compared identifiable curricula 
was astonishingly small (Usiskin 1999). This lack of studies existed even though 
in those years there had been more textbook development activity than perhaps 
any decade previously. Instead, there were many studies of graphing calculators, 
a number of studies of geometry drawing programs, some of symbol manipula-
tors. But these are tools, not curricula. They have no definite sequence and an 
unclear scope, and there is no reason to expect that different teachers would use 
these tools in anything resembling a consistent manner, nowhere near the consis-
tency we get from textbook use.
	 Ironically, a number of studies were conducted on “cooperative learning,” 
a “technology-rich” curriculum, or a “constructivist-based” curriculum, but not 
on specific textbooks. Such singular emphasis ignores the fact that any of these 
ideas can be implemented in many ways. A particular method of implementing 
an idea may be so poor that it results in poor performance, but another imple-
mentation of the same idea may be quite effective. Researchers tended to avoid 
studies of textbooks, where the treatments are roughly replicable, and instead 
studied instructional techniques, where the treatments are seldom replicable. As 
a result, little was learned that could be passed on to others.
	 The results from studies of textbook use are likely to be more consistent than 
the results of studies of specific instructional practices. But even that approach 
is problematic. Our experience, based on at least twenty University of Chicago 
School Mathematics Project studies from 1985 to 2007 involving multiple class-
es in six to twenty schools each, is that classes differ far more than would be ex-
pected by chance, and teachers and schools differ on so many different variables 
that a textbook or curriculum that works better in one place cannot be predicted 
with certainty to work better in another.
	 Comparative curriculum research is complex. When studying curriculum, 
the treatments may have substantially different goals; for example, one curricu-
lum may spend a great deal of time on statistics whereas another ignores statistics 
completely. For students who have encountered significantly different content, 
no test of comparison is fair. The decision about which curriculum is better must 
again be made on belief rather than statistical evidence.
	 Given such difficulties, could we possibly statistically determine that one cur-
riculum is better than another? Due to the variety of student populations, samples 
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would have to be larger than just a few classes or a few schools. The natural place 
to collect such data would be in conjunction with the National Assessment of Edu-
cational Progress, because samples are typically of classroom size in every school 
in which there is testing, and as students’ data are collected, so too are data on their 
classrooms, their teachers, and their schools. However, the National Assessment 
Governing Board (NAGB) has refused to collect data on the textbooks used by the 
students in its assessments. So, despite more than three decades of data collection, 
we have no definitive statements about the textbooks used in the United States or 
any causal or even correlational connections between particular textbooks and 
students’ performance. As a result, in both the new math and the standards eras, 
some observers believed that the newer curricula were not really being imple-
mented in schools, whereas others reported the occurrence of major changes, and 
some believed that changes in student performance were due to changes in cur-
riculum, whereas others believed that no conclusive evidence was found to tie 
these changes to any particular curriculum. The situation is akin to examining 
whether vitamins can reduce incidence of cancer in a population by recording the 
incidence of cancer but not recording who in the sample has taken which vitamins. 
We will never be able to determine the relative merits or deficits of various curri-
cula until we are willing to attach the best performance data we have accumulated 
to the specific curricular materials in use by those being tested.

Conclusion
	 What can we say is the current state of the school mathematics curriculum? 
In the United States, the answer is that it is one in which beliefs about what 
should be in the curriculum have overridden what evidence there is about suc-
cessful curricula. Teachers and students are taking many different roads through 
the mathematical universe despite efforts in many states and at the national level 
to put all the buses on the same road. Most of the time these roads lead almost all 
students through the same itinerary, but some roads are charting new, exciting, 
different territories using new kinds of transports. If the history of the rebellions 
against the new math era tells us anything about the corresponding rebellion 
against the standards era, it suggests that attempts to reach consensus on common 
goals will continue. We can only hope that that our visions regarding what is best 
for our students and our societies are broad enough to encompass the extraordi-
nary universe of mathematics in which our students find themselves.
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Technology and the 
Mathematics Curriculum

James T. Fey 
Richard M. Hollenbeck 
Jonathan A. Wray

T he fundamental goal of school mathematics is to help students develop 
the understandings, skills, and dispositions that are required for applying 

mathematical reasoning effectively to the tasks of future study, work, and per-
sonal living. In the past, mathematics programs reflected expectations that a rela-
tively small number of students should be prepared for mathematics-intensive 
collegiate study in physical science or engineering and that most students need 
only modest understanding of practical arithmetic and geometry for the limited 
demands of work and daily life. However, the rapid mathematization of work in 
almost all areas of business, industry, personal decision making, and the social 
and life sciences dictates that most students learn more and different mathemat-
ics than school mathematics programs provide. Without doubt, the most impor-
tant factor in this transformation of demands for school mathematics has been the 
infusion of computer tools for calculation, visualization, and data management in 
all facets of our work and personal lives.
	 Computer tools enable users to effortlessly handle complex computations. 
Using such tools presents opportunities to interconnect mathematical topics in 
dynamic and interactive ways. And they make accessible the study of new and 
different mathematical subjects. Without technology, asking students to do such 
things as analyze sizeable quantities of real data, use simulations to estimate 
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probabilities, work with recursive relationships, precisely measure areas of irreg-
ularly shaped figures, solve large systems of linear equations, and examine and 
apply encryption algorithms is impractical. Many mathematics curriculum mate-
rials already take advantage of the capabilities of technology by giving students 
opportunities to explore topics and investigate problems that could not be done 
without technology. For example, the Connected Mathematics Project (Lappan 
et al. 2006) has developed a series of interactive Java applets (connectedmath 
.msu.edu/CD/) that allow users to investigate mathematical patterns and relation-
ships to solve problems that would be unfeasible to pose without access to these 
computer programs.
	 Over the past several decades, the emergence of electronic tools has trans-
formed the ways that people can explore mathematical ideas and solve mathe-
matical problems. Calculators, notebook computers, and even cellular telephones 
and other handheld devices offer instant access to powerful options for numeric, 
graphical, and symbolic calculation and to the information resources of the World 
Wide Web. Many mathematics classrooms already present students with an im-
pressive array of technological tools for doing and learning mathematics. But 
access to tools is the easy part of transforming mathematics education. Figuring 
out how to use the tools effectively and appropriately is a far greater challenge. 
If teachers and students had full use of even the existing mathematical and com-
munication tools, how would such capability change the content objectives of 
mathematics courses? How would it change the way teachers teach mathematics 
in elementary, middle, or high school?
	 In this article, we elaborate the questions raised by the emergence of tech-
nology-rich mathematics classrooms and workplaces. Our objective is to stimu-
late thinking and experimentation by individual teachers, groups of teachers in 
the same school or district, teacher educators, curriculum and test developers, 
researchers, and educational policymakers about the need for, and direction of, 
change in the school mathematics curriculum.

Technology and Content of the 
Mathematics Curriculum
	 Calculators and computers and their various hardware and software pro-
grams are particularly well suited to the logical and algorithmic operations of 
numeric, graphical, and symbolic calculation that are essential in mathemati-
cal work. Numeric tools perform exact and approximate arithmetic on whole 
numbers, fractions, and decimals, as well as on irrational and complex numbers. 
Graphical tools display and help with analysis of data and functions. They also 
display, measure, and transform geometric figures that satisfy prescribed condi-
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tions. Computer algebra systems solve equations, transform expressions, and test 
conjectured identities.
	 What does this current and emerging access to tools for mathematical work 
imply about our content goals in school mathematics? Do we still need to em-
phasize proficiency in the standard computational algorithms of arithmetic for 
all elementary and middle grades students? Do we still need to emphasize profi-
ciency in routine algebraic operations on expressions, equations, and inequalities 
for all middle and high school students? How is statistical practice transformed 
by access to sophisticated data-analysis tools?

Arithmetic in the Future
	 In mathematics classrooms of the precalculator era, a large portion of in-
structional time was devoted to training all students in procedures for adding, 
subtracting, multiplying, and dividing whole numbers, common fractions, and 
decimals and for calculating with proportions and percents. The primary respon-
sibility for developing those skills was assigned to educators at the elementary 
and early middle grades.
	 If we look at the way arithmetic is done by most of us in even the current 
technologically rich environment, we might easily be skeptical of the claim that 
honing students’ skill in use of standard arithmetic algorithms is an appropriate 
use of precious class time and students’ interest. Suppose that we make the rea-
sonable assumption that anyone who finds a need to do arithmetic calculation of 
even modest complexity has access to a variety of tools for that work. Then we 
need sensible answers to the following questions about the impact of technology 
on curricular expectations in arithmetic: 

•	 What arithmetic understandings and personal procedural skills re-
main important in practical problem solving and learning of advanced 
mathematical topics?

•	 How does proficiency in students’ performance of standard arithmetic 
algorithms contribute to the essential skill of deciding which opera-
tions will resolve quantitative reasoning tasks?

•	 How can arithmetic curricula and instruction effectively develop stu-
dents’ skills in the kind of arithmetic estimation that is useful in judg-
ing the reasonableness of calculator results?

Of course, these questions are not new in mathematics education or in the public 
discourse about technology and mathematics curricular goals. But the infusion of 
calculating tools in all aspects of contemporary life makes timely a reconsidera-
tion of our educational objectives in arithmetic.
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Algebra in the Future
	 The case for developing students’ proficiency with arithmetic operations and 
standard algorithms is often justified by the argument that those skills are es-
sential for success in learning algebra. Indeed, if one thinks about algebra as 
a collection of syntactic rules for manipulating expressions, equations, and in-
equalities into equivalent forms, the importance of skill in generalized arithmetic 
procedures is obvious. However, once again, almost anyone who needs to operate 
on algebraic expressions, equations, and inequalities in technical work has access 
to tools that perform those tasks.
	 The use of graphing-calculator table and graph routines to solve equations 
and inequalities by numeric or graphical estimation is now widely known and 
applied. For example, suppose that one faces the following algebraic problem:

Officials of Major League Lacrosse need to decide which  
ticket prices for the league all-star game will lead to maximum  
revenue.

Market research and analysis of business conditions might suggest that income, 
expenses, and profit are related to average ticket price by such functions as the 
following:

Income:	 I(x) 	 =	 5000x – 65x2

Operation Expenses:	 E(x) 	=	 45,000 – 260x
Profit: 	 P(x) 	=	 –65x2 + 5260x – 45,000

Tables of values or graphs for the functions I(x), E(x), and P(x) show that the 
optimal average ticket price is approximately $40 and that the break-even points 
occur at ticket prices of about $10 and $70 (see fig. 2.1).
	 The optimal ticket prices can also be found by methods of elementary calcu-
lus and algebra—taking the derivatives of I(x) and P(x) and solving the equations 
I ′(x) = 0 and P ′(x) = 0. But those results can also be obtained by CAS commands, 
for example, 

solve(d(5000x – 65x2, x) = 0, x)

and
solve(d(–65x2 +5260x – 45000,x) = 0, x).

	 The break-even points for the game can also be calculated by solving the 
equation 5,000x – 65x2 = 45,000 – 260x. This result can be obtained exactly with 
the CAS command 

solve(5000x – 65x2 = 45,000 – 260x, x).

In fact, CAS can do much more of the standard algorithmic calculation that is 
developed over considerable instructional time in traditional algebra courses.
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	 In this problem situation, the numeric and graphical methods actually lead 
to valuable insight into the problem that is not available from the standard ap-
proaches using methods of algebra and calculus. For instance, although one can 
locate the maximum income and profit points by taking derivatives and finding 
zeroes of those functions algebraically, the numeric and graphical displays show 
how those specific points fit into the overall patterns relating income, expenses, 
and profit to ticket price. The graph and table reveal that changes in price of as 

 0 0 45,000 -45,000
 5 23,375 43,700 -20,325
 10 43,500 42,400 1,100
 15 60,375 41,100 19,275
 20 74,000 39,800 34,200
 25 84,375 38,500 45,875
 30 91,500 37,200 54,300
 35 95,375 35,900 59,475
 40 96,000 34,600 61,400
 45 93,375 33,300 60,075
 50 87,500 32,000 55,500
 55 78,375 30,700 47,675
 60 66,000 29,400 36,600
 65 50,375 28,100 22,275
 70 31,500 26,800 4,700
 75 9,375 25,500 -16,125
 80 -16,000 24,200 -40,200
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much as $10 from the optimal value will have only a modest negative effect on 
income and profit from the game.
	 The capabilities of universally available computer algebra tools suggest the 
following deep questions about the goals of school algebra instruction:

•	 Does focusing instruction on manipulating symbolic expressions, 
equations, and inequalities provide students with the most useful alge-
braic understanding and skill?

•	 Is there a productive connection between learning the manipulative 
skills of algebra and developing the ability to identify and represent 
problem conditions in the algebraic forms to which spreadsheet, 
graphical, and computer algebra system software can be applied?

•	 Because only a modest number of students will eventually enter disci-
plines that might require personal proficiency in algebraic manipula-
tions, might we be able to provide that technical skill training as an 
extension of curricula that focus first on basic concepts and  
technology-assisted problem solving?

The answers to these questions can be found only by thoughtful analysis of 
curricular goals, by empirical studies that test the limits of turning routine 
mathematical work over to technology, and by designing experiments that 
explore instructional strategies for developing students’ understanding of 
core mathematical ideas through the application of computing tools.

Data Analysis and Probability in the Future
	 In much the same way that calculators and computers raise questions about 
curricular goals that focus on procedural skills in arithmetic and algebra, tools 
that perform calculations in data analysis and probability suggest rethinking the 
goals of those important strands in grades K–12 mathematics. Widely available 
statistical software allows students to calculate summary statistics and to display 
the data with such graphics as line plots, histograms, box plots, and scatter plots. 
Probability software helps students simulate experiments with random processes 
and do the combinatorial calculations implied by theoretical analysis of those 
situations.
	 The fact that such tools for data analysis and probability calculations are 
now available to, and used by, nearly everyone who needs them for problem solv-
ing and decision making raises the following questions about the probability and 
statistics strand of school mathematics:

•	 How much time should be devoted to developing students’ skill in 
statistical calculation and graphing and how much to interpreting the 
results of those procedures?
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•	 What experience with paper-and-pencil calculation and graphing is es-
sential as a foundation for understanding basic concepts and thought-
ful use of statistical tools?

•	 What is the optimal mix of hands-on experiments and simulations in 
learning basic probability concepts?

Again, these questions can be resolved only by careful analysis of curricular goals 
and by empirical studies that explore the advantages and limitations of focusing 
instruction on conceptual understanding more than computational proficiency.

Geometry and Trigonometry in the Future
	 Although most people probably think of computers first of all as tools for 
high-speed numeric operations, some of the most impressive displays of comput-
ing power are the dynamic graphics that have become commonplace in video 
games, animated cartoons, and special effects of movies. Computer visualization 
tools and robots are also used throughout design and manufacturing processes of 
almost all industries.
	 Preparing students to participate in this digital visualization world—as ei-
ther producers or insightful consumers—requires an array of geometric under-
standings and skills that Euclid could not have imagined. Digital production of 
images requires the application of such mathematical ideas as vectors, coordinate 
systems, matrices, and transformations. Interpreting the typical two-dimensional 
representations of three-dimensional objects requires an understanding of per-
spective and the ways that color and shading are used to indicate geometric prop-
erties of visual objects.
	 In the classroom, interactive geometry software packages provide students 
with opportunities to construct and explore properties of geometric figures. A 
powerful feature of this software is the ability to make measurements and manip-
ulate geometric objects while preserving the properties of construction. Through 
visualization and repeated empirical measurement, students can gain insight into 
important geometrical concepts. All of this raises questions about the geometry 
strand of school mathematics.

•	 Should geometric topics in the curriculum be developed in ways that 
emphasize coordinate representation and transformations of figures in 
lieu of, or in addition to, traditional synthetic methods?

•	 What balance and interplay of experience and learning about two- and 
three-dimensional geometry is important for most students?

•	 What sequence of learning experiences with hands-on objects, draw-
ings, and computer displays will furnish students with essential geo-
metric understandings and skills?
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•	 What is the appropriate interplay of inductive learning through  
computer-based explorations and deductive proof of geometric  
principles?

As is true in considering curricular implications of technology for number, alge-
bra, and statistics, these questions about the future of geometry can be answered 
only by careful analytic and empirical studies. We need to know much more 
about the ways students can learn to use and understand technology-based visu-
alization tools and effects.

Conclusions
	 New and emerging technologies will continually transform the mathematics 
that is available to students and redefine ways that it can be taught. Mathematics 
educators will need to respond to these technological advances in ways that help 
students develop the mathematical understanding and reasoning skills necessary 
to be productive members of society, for example:

•	 How will advances in cell phones and other handheld devices affect 
ways that students access mathematics?

•	 When should interactive electronic textbooks with sophisticated search 
engines and dynamically connected, readily accessible graphing and 
calculation tools replace hard-copy versions of textbooks?

•	 How can digital gaming systems and interactive virtual worlds be used 
to enhance mathematical learning opportunities? 

•	 What role will podcasts have in supporting mathematics classrooms?

•	 What opportunities will an ever-changing World Wide Web present for 
teachers and learners of mathematics?

	 The calculating and computing tools already pervasive in work situations 
that require mathematical reasoning and problem solving have been enhanced 
and adapted to serve as impressive tools for teaching mathematics in elementary, 
middle, and high school grades. Appropriate use of those instructional tools and 
appropriate revision of curriculum priorities to reflect the changes in how mathe-
matical work is done in a technology-rich environment will require extensive and 
thoughtful study and experimentation. Curriculum specialists and other interest-
ed parties should carefully examine objectives to determine whether technology 
can enhance students’ learning of mathematics. However, technology should not 
be an add-on to curricula. Using technology to cover mathematical topics that are 
just as accessible though other approaches may actually interfere with learning 
and undermine the benefits of technology. Given the urgency of providing strong 
mathematical preparation for students who will enter and live in a technologi-
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cally sophisticated society and workplace, such study and experimentation by all 
involved in the enterprise of mathematics teaching should be a high priority for 
our field.
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National Standards: Lessons 
from the Past, Directions for 
the Future1

Margaret E. Goertz

The reauthorization of the No Child Left Behind (NCLB) Act renewed calls 
by organizations across the political spectrum for national standards. The 

bipartisan Commission on No Child Left Behind (NCLB 2007) recommended 
the development of voluntary model national content and performance standards 
and tests in reading and language arts, mathematics, and science based on the  
National Assessment of Educational Progress (NAEP) frameworks. Groups as 
ideologically diverse as Education Trust and the Fordham Foundation support-
ed these recommendations. In 2009, forty-eight states agreed to take part in the 
Common Core State Standards Initiative, a joint effort by the National Governors 
Association and the Council of Chief State School Officers to develop common 
K−12 and college- and career-readiness standards in mathematics and language 
arts. Adoption of these standards will be voluntary, but the U.S. Department of 
Education will provide some financial incentives for states to accept them.
	 The arguments in support of national standards today echo those of the past: 
they will promote democracy, equity, and economic competitiveness. The argu-
ments against national standards are also familiar: they will lead to the establish-
ment of a national curriculum; one size does not fit all; and local communities, 

1. This paper is based on the article “Standards-Based Reform: Lessons from the Past, 
Directions for the Future” by Margaret E. Goertz in Clio at the Table, edited by Kenneth 
Wong and Robert Rothman (New York: Peter Lang Publishing, 2008).
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not the federal government, know what is best for their students. The context 
for the debate, however, differs from that in earlier years. The extent of the fed-
eral government’s involvement in elementary and secondary school education 
is unprecedented. Professional organizations in several disciplines, such as the 
National Council of Teachers of Mathematics (NCTM), have developed stan-
dards that address students’ learning goals, assessment, and instruction (NCTM 
1989, 1991, 1995, 2000, 2006). NAEP’s proficiency levels have become de facto 
national performance standards, benchmarks against which the performance of 
states is judged (or confirmed). Indeed, the disparity between state and NAEP 
proficiency standards has been a driving force in the current push for national 
standards.
	 If the nation already has de facto content and performance standards, the 
adoption of voluntary national standards would appear to be a logical next step 
in federal education policy. Yet, the same underlying issues bedevil the adop-
tion of national standards now as in the past: what kinds of standards, whose 
standards, and with what effect? More specifically, policymakers must reach 
consensus on the type, content, and specificity of the standards; determine who 
will develop the standards; and facilitate the implementation of the standards.
	 This chapter discusses what we have learned over the years about stan-
dards and their implementation in an attempt to guide and improve future policy. 
Although the concept of “standards” encompasses a range of education poli-
cies and practices in the mathematics education community (e.g., curriculum: 
NCTM [1989, 2000, 2006]; appropriate teaching: NCTM [1991]; and assess-
ment: NCTM [1995]), I use the term to reflect content and performance stan-
dards for students, the focus of current policy debates about national standards. 
Content standards are broad descriptions of knowledge and skills that students 
should acquire and be able to do in a particular subject area. They indicate the 
topics and skills that should be taught at various grades or grade spans and are 
intended to guide public school instruction, curriculum, teacher preparation, 
and assessment. Performance standards, in contrast, provide explicit definitions 
and examples of what students must demonstrate to show that they have mas-
tered the content standards. Performance standards delineate how good is “good 
enough.” As a practical matter, however, performance standards are expressed in 
the form of “cut scores” on standardized tests.
	 This chapter begins with a very brief overview of the history of standards 
in the United States. Its second section discusses the implementation and ef-
fect of the standards-based reform movement over the past thirty years. The 
final section raises a set of issues facing policymakers who advocate national 
standards—or any standards—as the keystone of education reform in the years 
to come.
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A Brief History of Education Standards
	 Education standards have been expressed through laws, common curricu-
lum and textbooks, and entrance requirements for more than 200 years. The type 
(content, performance, input), target (students—all or differentiated; teachers; 
schools; districts) and use (improving educational quality, increasing educational 
opportunity, monitoring, gatekeeping) of the standards, however, have changed 
over time.
	 One could argue that the founding fathers in the United States delineated 
the first education standards in their writings about the purpose of education 
and in the education clauses of early state constitutions. Ravitch (1995) argues 
that schools in the nineteenth century had common content and performance 
standards as defined by relatively similar curricular materials (e.g., readers, geog-
raphy books), grading systems, and, for high schools, college admission require-
ments and examinations.
	 In 1893, the Committee of Ten sought to improve high school curriculum 
and standardize preparation for college by establishing high standards for all high 
school students, whether college bound or workforce bound. Similar to guiding 
bodies in the current standards movement, they recommended what should be 
taught in each subject area, how students’ knowledge should be assessed, and 
how teachers should be prepared to teach the content. These standards affect-
ed few students, however, because only one in ten youth were enrolled in high 
school at the turn of the twentieth century. In contrast, the Cardinal Principles of  
Education, issued by the National Education Association’s Commission on the 
Reorganization of Secondary Education (CRSE 1918), called for a curriculum 
that would adapt the school program to individual differences in interest and abil-
ity. This approach seemed well suited for the expanding population of high school 
students who came from working-class and immigrant families, but resulted in 
differentiated program and content standards. The principles of the Committee of 
Ten and college admission standards defined the content of the academic track in 
high schools, whereas those of CRSE applied to the general and vocational tracks 
(Ravitch 1995). The equity and excellence movements of the second half of the 
twentieth century, and the current debate over national standards, are attempts to 
reconcile these very different visions for educating our youth.
	 The equity movement of the late 1960s directed new attention to inequi-
ties in schools, particularly in poor and minority communities. Concerns about 
students’ inability to read and compute (c.f., Kline [1973]) led many states to 
implement testing and other policies in the 1970s to hold educators accountable 
for the operation and performance of their schools and to hold students account-
able for the mastery of basic skills through high school graduation tests. When 
states instituted minimum competency tests in the 1970s, teachers paid attention 
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to the competencies and prepared students for the tests. This emphasis on ba-
sic skills, coupled with federal funding for compensatory education through the 
Elementary and Secondary Education Act, increased the achievement of minor-
ity students and, to a lesser extent, students from educationally disadvantaged 
families (Smith and O’Day 1991). Concerns were raised then, however, as now, 
that teachers narrowed the curriculum to the tested content, which was low-level 
mathematics and reading.
	 Success in raising basic skills was not matched by a commensurate rise in 
student performance on higher-order skills or in performance that was on par with 
the country’s international competitors. This situation triggered the next round 
of education reform—one focused on more stringent input standards and, in-
creasingly, on more rigorous content and performance standards. The standards-
based reform movement emerged in the late 1980s and early 1990s through the 
work of a group of education leaders, governors, businessmen, researchers, and 
professional organizations such as NCTM and the American Association for the 
Advancement of Science. Under the theory of standards-based reform, states es-
tablish challenging content and performance standards for all students and align 
primary state policies affecting teaching and learning—curriculum and curricu-
lum materials, preservice and in-service teacher training, and assessment—with 
these standards. States then give schools and school districts greater flexibility 
to design appropriate instructional programs in exchange for holding schools ac-
countable for students’ performance (Smith and O’Day 1991).
	 These ideas were incorporated into federal policy, beginning with the  
Improving America’s Schools Act of 1994, which required states to develop chal-
lenging content standards in at least reading and mathematics, create high-quality 
assessments to measure performance against these standards, and have local dis-
tricts identify low-performing schools for assistance. The Goals 2000 legislation 
and such programs as the National Science Foundation’s State and Urban System-
ic Initiatives provided funds for states and localities to design the components of 
a standards-based system and to build the capacity of local districts to implement 
these reforms. With the enactment of the NCLB Act of 2001, the federal govern-
ment expanded its role significantly, requiring states to test more frequently and set 
more ambitious and uniform improvement goals for their schools, and prescrib-
ing sanctions for schools that fail to meet these goals. The substance of academic 
content and proficiency standards, however, remains the responsibility of states. 
States are constitutionally responsible for education, and federal law forbids its 
agencies from mandating, directing, or controlling the specific instructional con-
tent, curriculum, programs of instruction, or academic achievement standards and 
assessments of states, school districts, or schools (Fuhrman 2004).
	 In summary, calls by some for “national standards” have many things in com-
mon with the past. Periodic pushes have been made over the centuries for com-
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mon standards and for higher standards for all students. A new factor, however, is 
that the talk of high standards takes places in a context in which all students are 
expected to attend and complete high school. Accountability for the outcomes 
of schooling has shifted from students to schools and school districts, and the 
purposes of assessment have expanded from placing and promoting students to 
generating indicators of performance of the education system and motivating 
educators to consider changes in their instructional content and strategies.

Implementing Standards 
	 Has the articulation of specific content and performance standards made a 
difference? Studies of standards-based reform conducted at the end of the twen-
tieth and the early twenty-first century show that standards and accountability 
systems are driving educational change.

Standards Matter
	 Although the public is divided in its support of the NCLB Act (Rose and  
Gallup 2007), the concept of higher academic content and performance stan-
dards is generally accepted among the public, educators, and policymakers. Most 
parents support continuing to raise standards, and most students say that requir-
ing them to meet higher standards for promotion and graduation is a good idea 
(Johnson, Arumi, and Ott 2006). Teachers also believe in the intrinsic value of 
standards. They believe that state standards identify what their students should 
know and be able to do, that the standards are compatible with good educational 
practice, and that the public should hold students and educators to account for 
meeting certain outcomes. Teachers find standards useful for bringing focus and 
consistency of instruction within and across schools. They also find standards 
helpful for guiding their own instruction and aligning their instruction with them, 
although they believe that standards include more content than they can cover in 
a year, and are, in some instances, too vague to give useful guidance (Kannapel et 
al. 2001; Massell et al. 2005; Johnson, Arumi, and Ott 2006; Stecher et al. 2008).
	 The perceived legitimacy of state assessment systems, however, is much low-
er, particularly among teachers. Teachers do not believe that state tests are neces-
sarily a good measure of their students’ mastery of content, and many raise con-
cerns about the lack of alignment among standards, curriculum, and assessment. 
But teachers report that they align instruction with assessment and focus more on 
standards (Goertz and Massell 2005; Stecher et al. 2008). Teachers, schools, and 
districts are also paying attention to the data generated by assessments. Teachers 
review assessment results to identify students who need additional help, topics 
that require more emphasis, and gaps in curriculum and instruction. Districts and 
schools are increasing their use of annual and interim student test data to plan 
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for school improvement, to change curriculum and instructional materials, and 
to focus professional development (Massell 2001; Padilla et al. 2006; Stecher et 
al. 2008).

Incentives to Use Standards Matter
	 Accountability has gotten people’s attention, for better or worse. Educators 
are responding to the press of performance-based accountability even though 
they believe that accountability and assessments narrow the curriculum and con-
strain their teaching approaches, and even when they do not feel an immediate 
threat from sanctions or see the possibility of rewards (Goertz 2001; Kelley et 
al. 2000; Massell et al. 2005; Stecher et al. 2008). Stronger accountability has 
also focused educators’ attention on traditionally underserved populations of stu-
dents. Although some educators still question whether all students can attain high 
standards, their expectations for these students are considerably higher than in 
the past. Teachers report that they search for more effective teaching methods, 
focus more on standards and on topics and formats emphasized in assessments, 
and change some elements of their instructional practice in response to state 
assessments (Goertz and Massell 2005; Kannapel et al. 2001). Districts have re-
sponded to the accountability press by providing assistance to schools, although 
not always the kinds of intensive support envisioned under NCLB (Center on 
Educational Policy 2007; Padilla et al. 2006; Stecher et al. 2008). 
	 Consequences, however, are not sufficient in and of themselves to encour-
age action consistently across districts or schools. Staff members in some low-
performing schools feel little pressure and react only minimally. An important 
factor in staff responsiveness is whether their district leaders take a strong stand 
on accountability, mandating or in other ways encouraging their schools to take 
action. Professional pride and the acceptance of the intent of reform are other 
factors that explain changes in teacher behaviors (Goertz and Massell 2005). 
	 Researchers have identified negative consequences of increased accountabil-
ity pressure as well. High-stakes accountability has led to more time spent on 
test-preparation activities, narrowing of the curriculum, and increased attention 
to “bubble kids,” or children who are performing at just below the pass rates 
of mandated assessments (c.f., Booher-Jennings [2005]; Firestone, Schorr, and 
Monfils [2004]; McMurrer [2008]; Shepard and Dougherty [1991]; Stecher et 
al. [2008]). Concern over the negative impact of more difficult tests on students, 
particularly students of color and English language learners, has slowed the de-
velopment of new high school tests aligned with higher standards and led some 
states to delay the requirement of students’ passage of these tests for high school 
graduation (Fuhrman, Goertz, and Duffy 2004). And, under the press of NCLB 
sanctions, states have called for changes in ways that schools are identified for 
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improvement, such as increasing subgroup sizes, incorporating confidence inter-
vals in the measurement of proficiency, and using growth models.

Who Sets Standards and Incentives Matters  
Even More
	 States use different processes for setting and updating academic content 
standards, setting proficiency standards, and designing accountability systems. 
Who sets standards can affect the legitimacy of standards among educators and 
the public.
	 Teachers are more likely to support standards set by other educators or their 
professional associations than by government. Although professional organiza-
tions such as NCTM have used consensus processes to develop standards, con-
sensus over the content of standards remains elusive both within and outside the 
education community. States have faced philosophical battles over what should 
be taught (e.g., evolution, social science content) and how (e.g., different ap-
proaches to teaching mathematics and reading). For example, the teaching of 
mathematics became the subject of heated controversy in California and other 
states, with traditionalists (including some university mathematics professors) 
battling reformers over appropriate pedagogy (teacher-directed versus student-
constructed knowledge) and curricular emphasis—process (problem solving and 
mathematical reasoning) versus content (facts, computation, and algorithms). 
The resulting standards placed greater emphasis on basic skills and traditional 
pedagogy and assessment formats (c.f., Smith, Heinecke, and Nobel [1999]; Wil-
son [2003]).
	 These battles are not new. Schoenfeld (2004) argues that the underlying is-
sues being contested in mathematics education are more than a century old. Is 
mathematics for the elite or for the masses? Should mathematics be studied be-
cause it develops the ability to reason, for its cultural value, or for its economic 
value? Standards-based reform has shifted the venue for these battles, however, 
from local school boards to state boards of education and state legislatures. Al-
though skirmishes continue in local communities and debates rage in the aca-
demic and practitioner communities, combatants now mobilize to influence the 
content of state curriculum frameworks, and, in many states, the selection of 
instructional materials.

Standards Are Necessary but Not Sufficient  
to Change Teaching and Learning
	 Rigorous standards may require teachers to teach different content and to 
teach that content differently. As recognized in the NCTM Standards (1989, 
2000), building teachers’ knowledge and skills is a crucial component of the 
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change process, and the theory of action underlying both standards-based reform 
and NCLB assumes that states and local school districts possess, or can develop, 
the capacity to assist school improvement efforts, to bring all students to profi-
ciency, and to pay for these efforts.
	 Districts have been aligning curriculum and instruction for more than a de-
cade, both vertically with state standards and horizontally with other elements of 
district and school policies and procedures. Many districts have taken additional 
steps to align instruction by developing more specific local standards; publishing 
curriculum guides with standards, frameworks, and pacing sequences; and issu-
ing documents that map the content of required textbooks to standards and as-
sessments (c.f., Massell and Goertz [2002]; Padilla et al. [2006]). Most districts 
with schools identified as needing improvement report using other strategies, 
such as school improvement planning; the use of data and research to guide in-
struction; increasing the quantity or quality or professional development; provid-
ing extra time for, and more intensive academic instruction to, low-performing 
students; and increasing instructional time in reading and mathematics, particu-
larly in elementary schools. Districts are also restructuring the elementary school 
day to teach core content areas in greater depth (Center on Educational Policy 
2007; Padilla et al. 2006).
	 States and districts lack capacity, however, to provide intensive support to 
low-performing schools and students, the kind of support they need to meet the 
high academic standards as envisioned under NCLB. Only half the districts with 
schools in need of improvement report that they have school support teams, and 
only one-third provide additional full-time school-level staff to support teacher 
development, mentors, or coaches for the principal (Center on Educational Policy 
2007; Padilla et al. 2006). Furthermore, the availability and intensity of support 
varies by the size of districts. This variability in level of support is worrisome 
because most technical assistance comes from school districts. Districts, in turn, 
report they turn to their state departments of education and education service 
agencies for help (Center on Educational Policy 2006). As with districts, how-
ever, resource-intensive state assistance covers only a portion of low-performing 
schools (Padilla et al. 2006). States with large or growing numbers of schools 
and districts identified for improvement are focusing support on their most chal-
lenged schools, leading to calls for differentiated treatment of, and consequences 
for, schools under NCLB.

Considering National Standards
	 Education policy in the United States has changed considerably in the past 
twenty years. All states have content standards, assessments, and accountability 
systems that include all students and focus attention on students’ learning. In most 
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states, the rigor of standards is higher than in the past, although many stakehold-
ers argue that current standards are not rigorous enough. If low standards are the 
problem, then the solution lies in generating higher-quality academic standards 
(perhaps national standards), encouraging states to adopt them, and supporting 
schools and districts in implementing more-challenging curricula. The push for 
reform based on national standards raises five issues for policymakers, however.
	 First, what is the nature of the problem? Are standards too lax? Are they too 
general? Are they too incoherent? Critics charge that standards in most states are 
not as challenging as those in high-performing nations and that too few students 
are gaining the knowledge and skills they need to succeed in college and the 
workplace. In contrast with other countries, our state academic standards are 
unfocused, lack coherence, and have led to a curriculum in the United States that 
is “a mile wide and an inch deep” (c.f., Schmidt, McKnight, and Raizen [1997]; 
Rothman [2004]). Or, have we established suitable standards but set our expec-
tations for students’ performance too low? States vary widely in the percent of 
students who are proficient on their state standards, ranging from 87 percent in 
Mississippi to 34 percent in Missouri (U.S. Department of Education 2006). Is 
this range due to variation in content standards or in proficiency standards? Is the 
quality and coverage of state assessments problematic? If we establish national 
standards, must we also create national assessments and proficiency standards 
(such as NAEP) to accurately measure what students know and are able to do?
	 Second, what constitutes good standards? How specific should they be? 
What learning trajectories should they incorporate? Should they include assess-
ment frameworks? Instructional strategies? What research exists on the most 
effective characteristics of standards? Have any states benchmarked their stan-
dards against international standards and, if so, with what effect on teaching and 
students’ learning? Do we (and how do we) know whether one state’s standards 
are superior to another’s? How can research on how students’ learning typically 
proceeds over time in specific content areas guide the design of standards?
	 Third, who should develop national standards? Should this function be the 
purview of federal organizations, such as the National Assessment Governing 
Board; national bodies, such as the National Academy of Science; professional 
organizations in the disciplines, such as NCTM; or consortia of states, such as the 
American Diploma Project? What should be the relative roles and contributions 
of academics, practitioners, parents, business, and the public in the development 
of standards? As discussed previously in this chapter, these decisions have both 
normative and political implications.
	 Fourth, what are the incentives for states to adopt new standards? Would a 
federal requirement of states to benchmark their standards against national, inter-
national, or multistate standards as a condition of receiving Title I funds be politi-
cally feasible? Previous attempts to do so have failed. The Goals 2000 Act of 1994 
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created a federal agency, the National Education Standards and Improvement  
Council, with the responsibility of certifying voluntary national content and 
performance standards and certifying that state standards “are comparable to 
or higher in rigor and quality than national standards” (Ravitch 1995). The 
following year, the new Republican majority in Congress repealed this pro-
vision of Goals 2000, and the federal government now approves each state’s 
standard-setting process, not the content of its standards. The publication of 
NAEP scores is intended to serve as a check on state assessments, enabling the 
public to compare state proficiency standards and confirm changes in students’ 
performance. We do not know, however, whether publicizing discrepancies be-
tween performance on states’ own assessments and NAEP has led any states to 
consider raising their standards.
	 Fifth, what kinds of support do states, districts, schools, and teachers need to 
improve failing schools and raise students’ performance? Who will provide the 
needed resources and support? Is it fair to hold students and schools accountable 
for meeting more-rigorous academic standards if they are not given the oppor-
tunity to learn the tested content? Because a high school diploma is a property 
right, courts require states to ensure that high school students have sufficient 
opportunity to learn the skills assessed on a test required for graduation. These 
include teaching the tested skills (“curricular validity”) and any evidence of suc-
cessful remediation attempts. This principle does not apply, however, to other 
policies involving education accountability, and the concept of opportunity-to-
learn standards remains controversial and not well defined. Although NCLB’s re-
quirement that all schools have “highly qualified” teachers is intended to address 
one inequity in the delivery of educational services, large disparities in education 
spending across as well as within states remain a major barrier to ensuring equal 
access to a high-quality education.
	 In conclusion, the adoption of national standards would appear to address 
concerns about the quality and equity of elementary and secondary school ed-
ucation in the United States. Frameworks for national standards already exist 
in several disciplines. Experience with current standards suggests that national 
standards could make some difference in what is taught and in what students 
learn. Yet, they are not a panacea for what ails American education. As with most 
public policy, the devil is in the details of the design and implementation of na-
tional standards. Proposals for national standards raise the ever-present issue of 
who controls our educational system. Although the federal government expand-
ed its role significantly under NCLB, states remain constitutionally, fiscally, and 
substantively responsible for education, and schools and their staffs ultimately 
determine how standards are enacted in the classroom. Can national standards 
alone bring coherence to our highly decentralized and fragmented educational 
system?
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Recommendations for 
Statistics and Probability in 
School Mathematics over the 
Past Century

Dustin Jones 
James E. Tarr

During the course of the current school year, most students in the United 
States are likely to have had an opportunity to study topics in statistics or 

probability, regardless of their grade level. Historically, this has not always been 
true, because statistics and probability are relatively new to the grades K–12 
mathematics curriculum. The first major call for reform in mathematics educa-
tion in the late nineteenth century, the Report of the Committee of Ten on Second-
ary School Studies (National Education Association 1894), made no mention of 
statistics or probability. However, beginning in the late 1950s, national organi-
zations began to argue that a stand-alone course should be devoted to statistics 
and probability in the final year of secondary school. Over time, topics in statis-
tics and probability have expanded into the earlier grades, including elementary 
and middle school (e.g., National Council of Teachers of Mathematics [NCTM] 
1989, 2000).
	 This article highlights significant recommendations for including statistics 
and probability in the school mathematics curriculum—the recommendations for 
what students in prekindergarten through grade 12 should have the opportunity to 
learn. (The timeline in figure 4.1 depicts several pivotal recommendations.) The 
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history of statistics and probability in the school mathematics curriculum over the 
past century has been distinct from that of other mathematical content strands, 
such as arithmetic or algebra. Its progression has been a journey from relative in-
significance, reserved for the most able students in high school, to prominence as 
a fundamental component recommended for all students at all grade levels. After 
including a brief historical overview of the evolution of statistics and probability 
in grades K–12 mathematics education, we present a rationale for the increasing 
presence of statistics and probability in the mathematics curriculum.

Fig. 4.1. A timeline of shifting emphases on statistics and probability in the 
grades K–12 school curriculum

Recommendations for Attention to 
Statistics and Probability in the School 
Curriculum
Initial Recommendations for Secondary School
	 In 1923, the National Committee on Mathematical Requirements of the 
Mathematical Association of America (MAA) made one of the earliest recom-
mendations for including statistics in the school mathematics curriculum in The 
Reorganization of Mathematics in Secondary Education. The report focused on 
mathematics courses for grades 7–12, and at that time, arithmetic was the major 
emphasis. The committee asserted that every individual would need a knowledge 

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Fig. 1. Timeline of shifting emphases on statistics and 
probability in the K-12 school curriculum

1923: The Reorganization of Mathematics in 
Secondary Education gives the first recommendation 
that students learn statistics (grades 7–12) 

1959: Description of a course in probability 
for twelth-grade students in Program for 
College Preparatory Mathematics

1977: Statistics and probability included as 
“basic mathematical skills” in the NCSM 
Position Paper on Basic Mathematical Skills

1940: The Place of Mathematics 
in Secondary Education gives the 
first recommendation that 
students learn probability 
(grade 12)

1989: Curriculum and 
Evaluation Standards for 
School Mathematics gives 
the first recommendation 
that all students learn 
statistics and probability

1975: Overview and Analysis of 
School Mathematics Grades 
K–12 gives first recommenda-
tion that statistics be taught at 
all grade levels

2007: Guidelines for Assessment 
and Instruction in Statistics 
Education published
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of additional mathematical topics—as a citizen, in the workplace, and in college. 
For example, the committee stated that students should learn to create and inter-
pret various types of graphs in grades 7–9. Other elementary statistical concepts, 
such as measures of central tendency, were recommended components of an elec-
tive high school course.
	 Attention to both statistics and probability were included in The Place of 
Mathematics in Secondary Education (Joint Commission of the MAA and the 
NCTM 1940). The authors emphasized the growing role of mathematics in daily 
life and the need for students to learn mathematics needed across different pro-
fessions. For example, the report recommended that students be able to create 
and interpret graphical representations of actual data from business, social stud-
ies, and science. The recommendations also included proposals for semester-
long courses for students in grade 12. Measures of central tendency, measures of 
variation, and correlation were included in the description of a course on socio-
economic arithmetic. In a proposed college algebra course, the committee men-
tioned that probability could be included alongside topics from algebra. These 
recommendations were, on the whole, not implemented as the nation turned its 
attention toward World War II.
	 In 1944, NCTM formed the Commission on Post-War Plans, which in turn 
produced three reports related to the future structure of the secondary mathemat-
ics curriculum. The third report, known as the “Guidance Report” (NCTM 1947), 
targeted high school students and described the mathematics needed for personal 
use, trained workers, and professional workers. Essentially, the authors sought 
to answer the question that students often ask: “When will I ever use this?” Ac-
cording to the commission, students needed statistical knowledge for personal 
use, such as the “intelligent reading of newspapers, magazines, and bulletins” 
(p. 317). Further, they recommended that trained workers, such as bookkeepers, 
clerical workers, craftsmen, farmers, and nurses, take a semester-long course in 
statistics in high school before entering the workforce.

Statistics and Probability for a Wider Audience 
	 In 1959, the College Entrance Examination Board (CEEB) made the first 
widely accepted recommendation to include probability as a topic for study in 
school mathematics. The board stated that the theory of probability is “of great 
importance for our modern technological society” (CEEB 1959, p. 31), citing 
the increased role of probability in the physical and social sciences and in mathe
matical applications, as well as the use of statistics in daily life and occupations. 
Consequently, its recommendation was a semester-long course on probability 
with statistical applications. Because of the mathematical sophistication of the 
proposed course, the board advised that it be offered to students in grade 12, and 
urged teachers to become familiar with the topics outlined.
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	 In the 1960s, the National Science Foundation funded the development of 
several mathematics curricula, which came to be collectively known as the “new 
math.” In 1975, the Conference Board of the Mathematical Sciences’s (CBMS) 
National Advisory Committee on Mathematical Education (NACOME) evalu-
ated the impact of these curricula. Its report stated that, although materials and 
courses related to statistics and probability were present, the implementation ap-
peared to fall short of the ideal. The NACOME report recommended that statistics 
units be taught in all grade levels, stating that these topics were “important in the 
life of every citizen” (NACOME 1975, p. 45) to critically evaluate such every-
day matters as advertisements, public opinion polls, weather reports, and public 
policy issues. The report endorsed offering a one-semester course in probability 
for twelfth-grade students who demonstrated the mathematical preparation and 
desire to do the work required. However, the NACOME report also proposed the 
creation of a high school course in statistics and probability for students with 
little or no preparation in algebra. This was a landmark development, moving 
from endorsing a course for the best and brightest to suggesting a course for all 
students.
	 As noted elsewhere, the “new math” curriculum materials produced dur-
ing the 1960s were met with opposition (Kline 1973). A concern emerged from 
elementary school teachers and the general public that students using these new 
materials were unable to accurately perform arithmetical computations (Payne 
2003). This growing concern blossomed into a full-fledged reactionary move-
ment that focused students on the fundamental, or basic, mathematical skills.
	 In an effort to define “basic mathematical skills,” the National Institute 
of Education (NIE) organized the Conference on Basic Mathematical Skills 
and Learning. The report issued from this conference (NIE 1975) stated that 
the practical uses of statistics and probability (e.g., organizing and interpreting 
data, understanding and using measures of center, interpreting weather reports, 
and evaluating gambling scenarios) qualified them as basic mathematical skills. 
Shortly after this conference, the National Council of Supervisors of Mathemat-
ics (NCSM) released the “NCSM Position Paper on Basic Mathematical Skills” 
(NCSM 1977). This document was influenced by the recommendations of the 
Conference on Basic Mathematical Skills and Learning, but it was much more 
widely disseminated. NCSM desired to expand the definition of “basic skills” 
beyond, yet still including, computation. They included statistics and probability 
as two areas that were needed in the contemporary technological society. In An 
Agenda for Action, NCTM (1980) stated that knowledge of statistics and prob-
ability was “essential to meaningful and productive citizenship, both immediate 
and future” (p. 5). As an outgrowth of the recommendations by the NCSM and 
NCTM, the CBMS declared that students in elementary and middle school need-
ed “direct experience with the collection and analysis of data” (1983, p. iv) and 
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called for the existing high school curriculum to be streamlined to make room for 
the new, fundamental topics of statistics and probability.

Standards for Statistics and Probability across  
All Grade Levels
	 Until the late 1980s, probability had been almost exclusively recommended 
for study in high school. This all changed, however, when NCTM recommended 
treating statistics and probability as a grades K–12 curriculum strand (NCTM 
1989). Specifically, the Council argued that the use of data for prediction and de-
cision making is abundant in a society based on communication and technology, 
and that students must be prepared to make sense of such data to “enhance [their] 
social awareness and career opportunities” (p. 167). Furthermore, it contended 
that statistics and probability was “used to make marketing, research, business, 
entertainment, and defense decisions, and … to communicate results” (p. 171). It 
recommended that statistics and probability receive increased attention in each of 
three grade bands: K–4, 5–8, and 9–12, with the level of sophistication increas-
ing across grade bands.
	 In the 1990s, NCTM revised and updated its Curriculum and Evaluation 
Standards. The result, Principles and Standards for School Mathematics (NCTM 
2000), intentionally connected the topics of statistics and probability in the Data 
Analysis and Probability content strand. In this document, NCTM reasserted that 
the ability to reason statistically was necessary for “informed citizens and intel-
ligent consumers” (p. 48) faced with the abundance of data available in consumer 
surveys, polls, and experiments. Furthermore, it argued for the inclusion of sta-
tistics and probability in the school mathematics curriculum because those topics 
involve reasoning that is often counterintuitive and therefore not easily developed 
without instruction. Compared with the aforementioned documents, Principles 
and Standards for School Mathematics contained the most detailed and coherent 
set of recommendations for all students.
	 In recent years, several organizations have argued that to follow the spirit of 
Principles and Standards for School Mathematics, the school mathematics cur-
riculum needs to be reorganized. In Curriculum Focal Points for Prekindergarten 
through Grade 8 Mathematics (NCTM 2006), data analysis and probability are 
connected with the focal points for seven of the nine grade levels. For grades 
6–12, the College Board (2006) listed “data and variation” and “chance, fairness, 
and risk” as two of eight central mathematical topics to prepare students for “suc-
cess in college, opportunity in the workplace, and effective participation in civic 
life” (p. ix).
	 Most recently, the American Statistical Association (ASA) published Guide-
lines for Assessment and Instruction in Statistics Education (GAISE) Report: 
A Pre-K–12 Curriculum Framework (Franklin et al. 2007). This document was  
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intended to complement Principles and Standards for School Mathematics. The 
report contains a comprehensive description of various levels of statistical under-
standing, a framework used to guide the development and assessment of statistics 
education, and detailed sets of activities illustrating the application of the frame-
work in a classroom setting. The authors asserted, “Every high-school graduate 
should be able to use sound statistical reasoning to intelligently cope with the 
requirements of citizenship, employment, and family and to be prepared for a 
happy, healthy, and productive life” (p. 1). Additionally, because statistical rea-
soning skills take time to develop, students should have opportunities to reason 
statistically throughout all grade levels. Further, the authors made a case that sta-
tistics is not a subset of mathematics. Instead, they argued that although these are 
related disciplines, the focus on variability sets statistics apart from mathematics, 
with some portions of probability used as tools for statistics.
	 The framework described in the GAISE report includes objectives for the 
four components of the statistical problem-solving process: formulate questions, 
collect data, analyze data, and interpret results. For each component, the frame-
work provides three levels of increasing awareness and ability to make the statis-
tics question distinction, defined as “a question with an answer based on data that 
vary versus a question with a deterministic answer” (Franklin et al. 2007, p. 37). 
Students at the highest level are able to—

formulate questions that can be answered with data; devise a reasonable plan 
for collecting appropriate data through observation, sampling, or experimenta-
tion; draw conclusions and use data to support these conclusions; and under-
stand the role random variation plays in the inference process. (Franklin et al. 
2007, p. 61)

These abilities increase over time by developing proficiency at lower levels of 
the framework. 

Rationale for Studying Statistics and 
Probability
	 An examination of the school mathematics curriculum over the past century 
reveals that its specific composition is dynamic rather than static, because it is 
responsive to the ever-changing needs of society. The rationale for including par-
ticular topics, however, has been remarkably stable. Specifically, three common 
themes for studying statistics and probability span the reform documents of the 
past century—citizenship, workplace, and college.
	 The argument for statistical literacy as a required element for productive citi-
zenship is a consistent message made in every document described in this article. 
Consider the striking similarities of the rationale in the following two passages, 
written eighty-three years apart:
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•	 “The development of the ability to understand and interpret correctly 
graphic presentations of various kinds … will also be recognized as one 
of the necessary aims in the education of every individual. This applies 
to the representation of statistical data which are becoming increasingly 
important in the consideration of our daily problems.” (National Com-
mittee on Mathematics Requirements,  MAA 1923, p. 7).

•	 “The present and emerging uses of statistics and probability in our so-
ciety have made these fields a part of the ‘new basics’ for all students. 
Such knowledge is critical for students’ success in quantitatively based 
college courses, as well as effective participation in civic life” (College 
Board 2006, p. 16).

Additionally, the prevalence of statistics and probability as essential in the Amer-
ican workplace is commonly cited in nearly every set of recommendations, from 
1923 to the present. The argument that coursework in probability and statistics 
prepares students for success in college is evident in reform documents of 1923, 
1959, and 2006. Despite commonalities in rationale for studying statistics and 
probability, variations in the scope of study and placement of topics within the 
school mathematics curriculum are evident across time.

Trends in the Treatment of Statistics and 
Probability in the Curriculum
	 Broadly speaking, changes in the role and treatment of statistics and prob-
ability are evident across three distinctive eras. First, the period spanning 1923–
1959 was one characterized by limitations in students’ opportunity to study prob-
ability and statistics. During this time, statistics was recommended for inclusion 
in the curriculum but probability was conspicuously absent. The reasons behind 
excluding probability from the school mathematics curriculum remain unclear; 
at the time, some mathematical topics were tagged for “decreased emphasis,” but 
probability was simply not listed at all. In comparison, statistics was identified as 
important content during this era but in a limited capacity. The study of statistics 
focused almost exclusively on measures of central tendency and the creation and 
interpretation of data displays, especially tables and graphs. Further limitations 
resulted from the perception that only advanced students could understand ad-
vanced statistical topics.
	 In the wake of the Sputnik launch, reform documents of the 1960s were 
characterized by calls for a more rigorous school mathematics curriculum. Dur-
ing this era, recommendations called for earlier placement of mathematics top-
ics and, for the first time, inclusion of such advanced topics as probability. In 
this second era, spanning 1959–1980, statistics and probability began to emerge 
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as appropriate components of the junior high and even elementary school cur-
riculum, therefore enabling the study of advanced topics in secondary schools. 
Separate coursework in probability and statistics was recommended as an elec-
tive for advanced students in junior high and high school, respectively. However, 
not until the 1970s was coursework in statistics recommended for all high school 
students instead of only the most able, and did the notion that probability and 
statistics are essential skills become widely accepted. 
	 During the 1980s, as problem solving became the focus of school mathemat-
ics curricula, statistics and probability provided both relevant problem contexts 
and tools for solving problems. Reform documents of this era called for school 
mathematics curricula in which all students are afforded opportunities to learn 
probability and statistics across the grades. Statistics and probability not only 
began to appear in popular curricular materials (Jones 2004) but also became 
commonly featured in state curriculum frameworks, beginning as early as kin-
dergarten. Moreover, high-stakes tests have reflected the prevalence of statistics 
and probability in the school mathematics curriculum. In fact, these topics now 
comprise 10, 15, and 25 percent of the 2009 National Assessment of Educational 
Progress in grades 4, 8, and 12, respectively (National Assessment Governing 
Board 2008).

Essential Content in School  
Mathematics
	 The rise of statistics and probability from obscurity to prominence in school 
mathematics is truly remarkable. In the Curriculum Principle, NCTM (2000, p. 
14) states, “A curriculum is more than a collection of activities: it must be coher-
ent, focused on important mathematics, and well articulated across the grades.” 
Statistics and probability are indeed essential elements of the integrated whole, 
and Curriculum Focal Points (NCTM 2006) provides numerous examples of how 
such content connects with related mathematics topics in the school mathematics 
curriculum.
	 Cobb and Moore (1997, p. 801) argue that “the need for [statistics] arises 
from the omnipresence of variability,” and so it follows that the study of sta-
tistics be structured around this important principle. The important content in 
statistics can be organized around the components of statistical problem solving, 
which are each related to variability. Probability topics span the entire statistical 
problem-solving process.

1.	 Formulate questions. ASA recommends students begin to anticipate 
variability as a foundation on which to formulate statistics questions. 
For example, children might ponder, “How does sunlight affect the 
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growth of a plant?” and anticipate that this question necessitates the 
collection of data that vary.

2.	 Collect data. Data collection designs should acknowledge variability, 
and students should determine how data could be collected to provide 
answers. Random sampling can reduce the differences between sample 
and population, and larger samples typically offer less variability.

 3.	 Analyze data. Students should come to learn that the primary purpose 
of statistical analysis is to give an accounting of variability in the data. 
Distributions of data can be represented in a variety of graphical dis-
plays (e.g., line plots, box plots, or histograms). Numerical summaries 
can describe characteristics of the distribution. When examining the 
center and spread of a distribution, students might use the mode and 
range, the median and interquartile range, or the mean and standard 
deviation, depending on grade level.

4.	 Interpret data. Statistical interpretations are made in the presence of 
allowing for variability. Children might argue that results of their class 
survey are likely to be different from results for a different class, mid-
dle school students might argue why the median is a more appropriate 
measure of center than mean, and high school students might learn 
that the results of an election poll should be interpreted as an estimate 
that is likely to vary from one sample to the next.

5.	 Probability. Given the omnipresence of variability, probability should 
be considered an essential tool for statistics that serves to quantify 
uncertainty. Children can learn that probability can be used to predict 
what is likely to happen in the long run, middle school students can 
develop the concept of independence, and high school students can 
realize that predictions based on data involve some degree of error.

Rather than pigeonhole these five components into particular grades or grade 
bands, these processes should be interwoven throughout the school mathemat-
ics curriculum, in increasing depth through the years, with the development of 
statistical literacy as the ultimate goal.

Looking Back and Looking Forward
	 Over the past century, statistics and probability have moved from relative 
obscurity in the mathematics curriculum to important, fundamental topics that 
should be studied by all students at each grade level. The importance of sta-
tistical literacy has been emphasized and reemphasized in documents dating 
back several decades, especially following World War II. Nevertheless, evidence 
shows that classroom implementation has lagged behind these recommendations 
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(Jones, Langrall, and Mooney 2007). One possible explanation is the underprep-
aration of teachers to teach statistics. The disciplines of statistics and mathemat-
ics, although related, are different, requiring different ways of thinking. Although 
mathematical knowledge may be necessary to learn and teach statistics, it is not 
sufficient. Despite the emergence of probability and statistics in the modern 
school mathematics curriculum, many teachers may not be affording students 
opportunities to learn because, ironically, “many prospective teachers have not 
encountered the fundamental ideas of modern statistics in their own K–12 math-
ematics courses” (CBMS 2001, p. 114). To break from this cycle, we must devote 
more effort to the statistical education of teachers if we wish to increase students’ 
knowledge and understanding of statistics and probability.
	 As we look to the future, statistics and probability are likely to continue 
to play an important role in the mathematics curriculum for all grade levels. 
They are widely recognized as important topics for students to study and learn. 
Research confirms that young children are able to understand topics within the 
strands of probability and statistics, although understanding develops gradually. 
In addition, statistics and probability naturally connect with other important ar-
eas of the school mathematics curriculum, such as counting, measurement, ratio-
nal number, and algebra.
	 A century ago, we heard a recurring debate whether geometry should be 
included in the school mathematics curriculum. Today, all students at every grade 
level study geometry. Over the next few decades, we hope to see statistics and 
probability take a similar place as a staple in the school mathematics curriculum 
enacted by teachers.
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Reflections on Five Decades  
of Curriculum Controversies

Stephen Willoughby

Many controversies in mathematics education that make news today have 
existed for centuries. Some seem to be continuously discussed, whereas 

others come and go, often in different forms and with different labels. Because of 
the importance of education, particular perspectives and those advocating those 
perspectives have been the subject of criticism. I have witnessed many of the 
controversies and felt much of the criticism since 1954, when I began teaching1. 
In this article, I reflect on three central, sometimes controversial, issues that im-
pinge on curriculum: differences in philosophical orientations toward learning 
and teaching mathematics; the influence of textbook publishing, marketing, and 
selection; and the influence of standards and other state and federal dictums.

The Impact of Differing Views of  
Teaching and Learning on Curriculum
	 The Latin word curriculum translates to English as race or race track, re-
minding us of the teachers and students who believe that “covering the material” 
as quickly as possible is the goal of schools. Others believe—like Lao-Tse, the 
founder of Taoism—that reaching the goal is not as significant as appreciating 

1. The author has been a grades K–12 teacher, college professor, textbook editor, and 
textbook author. He served as president of NCTM from 1982 to 1983. During his career, 
he was an observer and an active advocate in many of the controversies.
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the trip, and that education is an integral and continuing part of life, not just 
preparation for life.
	 Plato said, “Bodily exercise, when compulsory, does no harm to the body; 
but knowledge which is acquired under compulsion obtains no hold on the mind” 
(Jowett 1944, p. 390). Throughout history, leading educators have agreed with 
Plato. Both teacher and curriculum ought to try to make the subject appeal to the 
student.
	 Comenius (1592–1670), whose textbooks were used in western nations 
for more than a hundred years, incorporated the inductive methods of Francis  
Bacon. He said that teachers should teach less and learners should learn more. 
The teacher should be a guide, not a taskmaster or source of all information. 
Rousseau encouraged teachers and parents to pay more attention to their chil-
dren’s lives and interests and allow them more freedom to explore, both physi-
cally and mentally.
	 Pestalozzi asserted that education is ineffective unless it grows out of the 
initiative of the learner. An inductive approach should be used, starting with the 
interests of the learner. One of the most successful mathematics textbook pro-
grams in United States history, written by Warren Colburn (1884), was based on 
Pestalozzi’s principles. All these developments can reasonably be thought of as 
precursors of John Dewey’s progressive education movement, in which projects 
and exploration played an important role.
	 In spite of the overwhelming belief among leading educators that mathemat-
ics education, and education generally, should start with the learner’s reality and 
should be seen by the learner as useful and enjoyable, classroom practice has 
seldom approached that goal. Rather, direct teaching has remained the predomi-
nant method of teaching mathematics in many schools and by many teachers. 
Authors of most textbooks in the mid-nineteenth century and subsequently have 
continued to write textbooks designed to have students focus on skills through a 
direct-teaching approach.
	 Until the late 1800s, faculty psychology was prominent, in which it was 
thought that we could train the various faculties (memory, logic, and so on) by 
teaching certain subjects, such as Latin and mathematics. When Thorndike and 
Woodworth (1901a, 1901b, 1901c) and others demonstrated that, with the meth-
ods then commonly employed, no transfer of training was observed from one 
subject to another, nor even transfer from one topic in mathematics to another 
topic, faculty psychology lost much of its luster, as the teaching of Latin and 
mathematics did.
	 Thorndike and Woodworth argued for a stimulus-response-based focus on 
rote learning of only those facts that were thought to be useful. But Charles Judd 
(1908) and other researchers claimed, and showed, that when mathematics is 
taught first with understanding and then practiced (not vice versa), then students 



Reflections on Five Decades of Curriculum Controversies	 79 

do transfer their learning to other topics and remember the mathematics better, 
making it easier to apply to new situations. Evidence has continued to accumulate 
that mathematics learned first with understanding and then practiced for retention, 
if necessary, is more useful and transferable than mathematics learned first by rote 
practice (Hiebert 1999). If the rote learning comes first, subsequent attempts to 
teach understanding usually fail (Kilpatrick, Swafford, and Findell 2001).
	 Today, textbooks are available that develop mathematics from the learner’s 
view, and practice is provided through games and other activities that students 
see as useful and enjoyable. However, these textbooks are not widely used, be-
cause some teachers and parents claim that the books do not provide sufficient 
practice, even though students using these materials acquire similar proficiency 
in skills, make better use of higher-order-thinking skills, and have more positive 
attitudes toward learning and using mathematics (Dilworth and Warren 1980; 
Stein, Smith, and Remillard 2007). 
	 I believe curriculum materials should be designed to help teachers furnish 
an environment in which students can explore an interesting question; answer it, 
perhaps inefficiently; and be guided to more-efficient means that result in a useful 
algorithm. Then students should practice important skills using games, realistic 
applications, and other enjoyable, relevant activities. Good curriculum materials 
should help teachers provide such environments. This must be done if the student 
is to discover a substantial portion of mathematics. Students who discover the 
mathematics themselves will remember it better and, if they forget, be able to 
rediscover it more readily because they know they did so before. The added confi-
dence may even help them discover mathematics that is new to them.

The Impact of Textbook Publishing, 
Marketing, and Selection
	 Textbooks have had a significant influence on mathematics education in the 
United States—both positive and negative. Yet, commercial publishers are reluc-
tant to invest substantial sums of money in innovative mathematics curriculum 
materials that have unproved market potential. Alfred North Whitehead (1967,  
p. 4) said,

Whenever a textbook is written of real educational worth, you may be quite 
certain that some reviewer will say it will be difficult to teach from it. Of 
course it will be difficult to teach from it. If it were easy, the book ought to be 
burned; for it cannot be educational.

	 Although this position may be extreme, it is clear that until publishers pub-
lish better textbooks and schools adopt them, there will be less improvement in 
mathematics education than is needed. Publishers are not likely to publish better 
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textbooks until good ones that are available are adopted.  Publishers are inclined 
to follow the model of the currently popular textbook series so teachers will 
choose them and feel comfortable using them.
	 Careful evaluation, preferably including piloting any new program, would 
help evaluators decide whether it really is an improvement (see National  
Council of Teachers of Mathematics [NCTM] 1984). The primary person here is 
the teacher. If teachers continue learning throughout their lives, from professional 
meetings, from trying new procedures, from in-service and summer institutes, and 
so on, they will be better prepared to use new and better materials. Government 
agencies could help, without interfering in local autonomy, by supporting many 
more summer and academic-year programs for continuing teachers’ education.
	 Recommendations of major education organizations have historically had 
more influence on marketing by commercial publishers than on the published 
textbooks themselves. In 1959, I worked as an editor for a major publisher. A new 
edition of its first-year algebra book had recently been published. The College 
Entrance Examination Board (CEEB) Commission on Mathematics (1959) was 
about to issue its influential recommendations three months later than originally 
promised. Two questions I was asked in my first month with the publisher are 
pertinent.
	 First, a customer asked me why the commutative and associative laws of the 
algebra 1 textbook were on page 16 and the distributive law did not appear until 
page 112. I asked the principal author. He responded that those were the first two 
pages from which they could delete material to make sufficient space for CEEB 
recommendations. The rationale had nothing to do with an intellectual matter. 
The first two laws were unused in the intervening 96 pages, and none had any 
significant impact on the rest of the curriculum. The words were needed so that 
marketing could say, “We satisfy the CEEB Commission’s recommendations.”
	 Second, a representative of the CEEB Commission asked me how our ad 
could claim we satisfied the Commission’s recommendations when the report 
had not yet been published. I, of course, had nothing to do with the ad, and the 
best I could do was say that on the basis of preliminary reports, the publisher 
thought we would satisfy them. The publisher had thought the report would be 
published before the ad. I asked the CEEB representative why the report wasn’t 
published when it was scheduled. There had been a glitch. An editor had decided 
the term “real number” was used too often and had randomly changed about half 
the instances to “actual number.” Correcting this editorial misconception without 
computers took time. In fact, the CEEB recommendations were “satisfied” in the 
algebra 1 textbook in only the most superficial way with the insertion of sanc-
tioned words and no modification of pedagogy or mathematics.
	 At the 2000 NCTM Annual Meeting, where Principles and Standards for 
School Mathematics (NCTM 2000) was first made available, I stopped by the 
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booth of the same publisher and asked the representative why his grades K–6 se-
ries of books was good. He responded, “We satisfy all of the recommendations of 
the new Principles and Standards.” Principles and Standards had been available 
for only about two hours, although a draft document had been circulated widely 
for review. In my opinion, commercial publishers of textbooks treated most ma-
jor educational reports during the twentieth century (and there were many) much 
the same way. That is, publishers kept the textbooks as familiar as possible to 
teachers and remarkably similar to previous, financially successful, textbooks 
while inserting important phrases from the recommendations into sales materials 
and superficially into the textbooks. Few improvements were made.
	 This phenomenon is not new. Only fourteen years after Colburn published 
his very popular textbooks, Roswell O. Smith (1835) published an arithmetic 
textbook in which he said (p. iii), “The Pestalozzian professes to unite a complete 
system of Mental with Written Arithmetic. So does this.” He continued to explain 
why his books do everything the “Pestalozzian” (that is, Colburn) does and why 
they do them better.
	 Between 1966 and 1972, I was offered a senior authorship of eight different 
projected elementary school textbook series on the condition that I would not 
actually write the books or insist on particular innovations I thought would be 
effective. In 1972, I found a small publisher in rural Illinois who worked with me 
for thirteen years as I, with my coauthors, wrote and longitudinally field-tested 
a grades K–8 program, Real Math (Willoughby et al. 1973). An independent 
study (Dilworth and Warren 1980) showed that Real Math was highly success-
ful with students. Real Math also generated enthusiasm for mathematics among 
both students and teachers. Some big publishers copied superficial features of the 
program, claiming they did the same thing, only better.
	 Some years later, the small publisher sold its two textbook programs to a 
large school textbook publisher that previously had been unwilling to do any-
thing so innovative. The large publisher promptly began adding “features” and 
other material to the program that more than doubled the size of the teachers’ 
edition and substantially increased the size of the students’ books. Not all the new 
features were bad, and very little of the excellent material in the old curriculum 
had been deleted, but so much new material was included that teachers and stu-
dents were challenged to find and use much of it.

The Influence of State Curriculum 
Standards
	 In 1981, as the new president-elect of NCTM, I proposed that the Council 
develop a set of standards for mathematics education. This suggestion was a reac-
tion to the many “back to basics” textbooks that were common and that failed to 
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teach higher-order-thinking skills or foster a positive attitude toward learning and 
using mathematics. “Back-to-basics” programs had been a reaction to what many 
people thought was an overemphasis on the abstract logic and useless formalism 
of many of the “new math” programs. The proposed standards seemed reason-
able because several new and different curriculum programs had been developed 
by 1981. These programs (e.g., Wirtz 1974; Baratta-Lorton 1976; Willoughby et 
al. 1973) were showing success in developing higher-order-thinking skills as well 
as traditional basic skills and were generating positive student attitudes toward 
mathematics.
	 In 1981, NCTM had been losing both money and members at a frighteningly 
increasing rate for several years, and the Board of Directors chose to postpone 
consideration of the proposed standards until the financial future of the Council 
was more assured. The Council did, however, support the development of a short, 
excellent set of standards for the selection and implementation of instructional 
materials (NCTM 1984). Several years later, NCTM published Curriculum and 
Evaluation Standards for School Mathematics (NCTM 1989), which had a sub-
stantial, but not altogether expected or positive, influence on the mathematics 
curriculum. Some people misinterpreted the standards to mean that students no 
longer should learn many of the traditional basic skills. A second unexpected 
development was the move by numerous states to develop their own sets of stan-
dards that, in many instances, spelled out the curriculum for every grade in ex-
treme detail. No two states had identical standards, nor were the standards of any 
state the same as the NCTM Standards (Reys 2006).
	 The importance of traditional basic skills has been reconfirmed by represen-
tatives of NCTM in both Principles and Standards for School Mathematics (2000) 
and Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics 
(2006). The variation in state standards that has produced large, incoherent text-
books, however, has not been resolved. Leaders in each state are charged with 
the task of specifying content and performance standards and generally choose 
to do this work independently from other states. Although some publishers have 
begun to customize textbooks for some states, such as California and Texas, I be-
lieve that differing expectations across states reduces the likelihood of innovative 
textbook development. Curriculum Focal Points was published in the hope of 
reducing the diversity of standards, although whether the identified focal points 
will be adopted by states or whether doing so will contribute to more uniformity 
across state standards remain unclear.
	 With pressure to align textbooks to state and national standards, publishers 
are indeed faced with a difficult challenge—either to customize textbooks or to 
include many additional topics within a textbook series. Given the cost of cus-
tomization, the textbooks available to teachers and schools in all but the largest 
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states overburden teachers and students both physically and intellectually with-
out improving education.

Conclusions and Speculations
	 Teaching has been recognized as one of the most important occupations. It 
has also been one of the most widely criticized occupations throughout history. 
Almost everybody believes education is important, and almost everybody thinks 
they know what is wrong with education and how to improve it.
	 Curriculum changes have increased the quantity and sophistication of 
mathematics to be learned at a given age as society has become more quantita-
tive and technologically dependent. Although average citizens are not likely to 
be involved in the creation of new science and technology, they do make finan-
cial, social, and political decisions on the basis of quantitative data. The ability 
to understand and use such data, no matter how they are presented, is essential 
to making intelligent decisions.
	 People are more likely to continue learning and using mathematics if they 
learn it with understanding and see its beauty and the possibility of applying it to 
matters that interest them, including games as well as more practical matters. Skill 
with the traditional basics is important to facilitate creative thinking about complex 
questions. However, skill alone is unlikely to prepare students for their future.
	 Even if the traditional basic skills and higher-order-thinking skills are ac-
quired, students who have learned to dislike mathematics while acquiring those 
skills will likely not use or continue learning them. Those who have learned with 
understanding are more likely to remember the skills, to apply them efficiently, 
and to be able to rediscover skills they may forget. They will be able to transfer 
their knowledge to new problems in the future and figure out mathematics for 
new situations.
	 Demand for people who can do jobs that involve thinking, understanding, 
and creativity will increase for the foreseeable future. Intelligent citizenship re-
quires informed reflection. Surely mathematics education must include both the 
traditional basic skills and the higher-order-thinking skills of problem recogni-
tion, formulation, and solving, as well as the ability to communicate effective-
ly. Many politicians and representatives of the mass media seem to believe the 
teacher’s job is to train and test so that students become very good at doing what a 
five-dollar calculator can do better. Calls for more-rigorous quantitative research 
will achieve nothing until we decide what we value (Hiebert 1999).
	 Curriculum materials and standardized tests that cater to the lowest levels 
of human thought are easy to write and sell; to teach from such textbooks and 
prepare for such tests are also relatively easy to do. But to prepare people to 
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function in a global economy and preserve our way of government, I believe that 
mathematics teaching must place more emphasis on thinking and appreciation 
for the subject. To accomplish this goal, curriculum materials must become more 
challenging, more enjoyable, and more closely related to the learner’s world.
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What We Teach Is What 
Students Learn: Evidence  
from National Assessment 

Peter Kloosterman 
Crystal Walcott

M athematics curricula in the United States have experienced several shifts 
in content emphasis over the past one hundred years. Early in the twentieth 

century, instruction focused on drill and practice, emphasizing rote memoriza-
tion and procedural understanding. Midway through the century, curricula began 
to focus on meaningful mathematics, eventually leading students to investigating 
the underlying structure of the discipline. The back-to-basics movement of the 
late 1970s and early 1980s pushed curricula back toward procedures and skills 
until publication of Curriculum and Evaluation Standards for School Mathemat-
ics (NCTM 1989) moved the pendulum toward problem solving and conceptual 
understanding (Lambdin and Walcott 2007). The focus of this article is the extent 
to which these shifts in curricular emphasis, especially shifts resulting from those 
Standards, are connected to what students learn as measured by the National As-
sessment of Educational Progress (NAEP).

The National Assessment of  
Educational Progress
	 Conceptualized in the 1960s as a tool for assessing what students across the 
United States are learning in school, the first mathematics NAEP took place in 
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1973, with additional assessments taking place at two- to five-year intervals. In 
contrast with such assessments as the SAT that are taken only by college-bound 
students, NAEP results are based on a representative sample of all students re-
gardless of ability or aspiration. NAEP questions are created using a framework 
developed by the National Assessment Governing Board, and many questions are 
used for multiple years, making it possible to look at changes in students’ per-
formance over time. No Child Left Behind (NCLB) requires that NAEP be used 
as an independent measure of performance by state, and thus developers of state 
standards often pay attention to the NAEP framework. In brief, NAEP is the most 
respected indicator of students’ performance in the United States (Kloosterman 
2004). The primary message of this article is that NAEP provides strong evidence 
that changes in curricula, including changes based on the NCTM Standards pub-
lications, have had a substantial impact on what students learn1.
	 Although NAEP was originally conceived as a single assessment, it has 
evolved into two separate assessment programs in mathematics. The original 
NAEP program, now referred to as the Long-Term Trend assessment (LTT), as-
sesses students at ages nine, thirteen, and seventeen. For every assessment from 
1982 to 2004, LTT NAEP used identical items and procedures and thus docu-
mented changes in students’ mathematics skills over that period. The major limi-
tation of LTT NAEP is that because it is based on the curriculum of the 1970s, 
it includes a relatively small number of items that assess the topics that have 
received increased attention since that time.
	 NAEP results are reported through scale scores ranging from 0 to 500. The 
meaning of a score is consistent across grades and from one administration to 
the next (e.g., a nine-year-old who scored 250 in 1990 would know as much 
mathematics as a 13-year-old in who scored 250 in 2000). Between the first as-
sessment in 1973 and the LTT assessment in 2004, scores for nine-year-olds 
increased from 219 to 241 and scores for thirteen-year-olds increased from 266 
to 281. As we describe subsequently in this article, these gains are substantial 
and show that nine- and thirteen-year-old students today know more mathemat-
ics than their counterparts in 1973 (Kloosterman, Rutledge, and Kenney 2009a, 
2009b; Kloosterman and Walcott 2007).
	 In contrast with the performance of nine- and thirteen-year-old students, the 
performance of seventeen-year-old students has remained relatively stable, with 
scores increasing from 304 in 1973 to 307 in 2004. A six-point drop occurred in 
the scores of seventeen-year-olds between 1973 and 1982, and although some 
gain has been made by this age group since 1982, it is still minimal in relation 

1. Because NAEP is not an experimental research program, NAEP data cannot be used 
to “prove” a connection between curriculum and students’ achievement. Thus, readers 
should keep in mind that NAEP supports rather than proves a connection between the cur-
riculum studied and students’ achievement.
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to gains by younger students. One mitigating factor is that LTT test items for 
seventeen-year-olds are predominantly based on middle school mathematics. In 
fact, very little on the assessment for seventeen-year-olds goes beyond beginning 
concepts of algebra and geometry (Rutledge, Kloosterman, and Kenney 2009). 
Thus, gains in the more advanced skills taught in upper-level high school courses 
may not be measured by LTT NAEP.
	 The second NAEP program, which is now the primary NAEP program, 
began for mathematics in 1990 and is usually referred to as Main NAEP. This 
program spun off from the original NAEP and differs from the original in three 
important ways. First, most of the administrations of Main NAEP have included 
new items to measure content that has been added to the curriculum over time. 
Second, schools can more easily test intact classes of students rather than only 
students of certain ages. Main NAEP samples students in grades 4, 8, and 12 
rather than at ages nine, thirteen, and seventeen. Third, Main NAEP provides 
results by state as well as for the nation as whole. From 1992 to 2000 state par-
ticipation in NAEP was voluntary, but the NCLB legislation required participa-
tion of all states in mathematics NAEPs starting in 2003. Although some items 
in Main NAEP do change over time, the majority of them are used on multiple 
administrations. Thus, like LTT NAEP, it is a trustworthy indicator of change in 
students’ performance over time.

Main NAEP Results
	 Overall results on Main NAEP (fig. 6.1) parallel those of LTT NAEP in that 
substantial gains have been made at grades 4 and 8, but little change has oc-
cured at grade 122. Although no grade-level equivalent exists for NAEP results, 
Kloosterman and Walcott (2007) argue that approximately two grade levels of 
gain occurred between 1990 and 2003 at grades 4 and 8. These gains, like those 
on LTT, are substantial and suggest that changes in curriculum and instruction 
at these levels have had a significant impact on achievement. A modest increase 
was seen in grade 12 performance between 1990 and 2000, although the average 
score in 2000 was lower than it had been in 1996. Main NAEP was not admin-
istered at grade 12 in 2003; the scaling system for grade 12 was changed with 
the 2005 administration, making it impossible to compare the 2005 results with 
those of previous years. Although a larger number of complex grade 12 items 
are included by Main NAEP than for age seventeen by LTT NAEP, many Main 

2. Prior to 1996, students with disabilities or limited proficiency in English either took the 
mathematics NAEP under the same conditions as all other students or did not take NAEP 
at all. Since 1996, accommodations have been provided for these students. This change 
in administrative procedures had minimal affect on scores, but readers should be aware 
that the population of students taking Main NAEP in 1990 and 1992 was slightly different 
from those taking Main NAEP since 1996 (see Kloosterman and Walcott [2007]).
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NAEP items are still based on middle school mathematics. Should a higher per-
cent of grade 12 Main NAEP items reflect high school mathematics in the future, 
the resulting scores at this level will be interesting to observe.

Changes in Content Emphases  
in Grades 4 and 8
	 In addition to collecting achievement data, the NAEP provides demographic 
data obtained from student, teacher, and school background questionnaires. As 
part of the 1996, 2000, and 2003 mathematics assessments, fourth- and eighth-
grade teachers were asked to report the curricular emphasis given to each of 
the five Main NAEP content strands (number and operations, measurement, ge-
ometry, data analysis, and algebra) in their respective classrooms3. The possible 
responses were “heavy,” “moderate,” and “little/no.” The percent of students who 
had teachers answering in each category is given in table 6.1.
	 These data shed light on classroom teachers’ perceptions of changes in their 
instruction. Even though number and operations content continues to receive the 
highest percent of “heavy emphasis” in the fourth- and eighth-grade classrooms, 
the percent of fourth-grade students whose teachers claim giving “heavy empha-
sis” and “moderate emphasis” to geometry, data analysis, and algebra content has 
grown over the years surveyed. Likewise in grade 8, well over half the teachers 
surveyed claimed to give heavy emphasis to algebra content.
	 The evidence implies that changes in curricula recommended in the NCTM 
Standards (1989, 2000) are affecting classroom teaching. Just as suggested by 
NCTM, the overwhelming majority of teachers surveyed by NAEP report heavy 

Fig. 6.1. Main NAEP average scale scores, 1990–2007

3. In 2003, the eighth-grade assessment did not include this questionnaire item.
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emphasis on number and operations content. In addition, fourth-grade teachers’ 
perception of the curricular emphasis placed on algebra content has grown over 
the three years surveyed and remains consistently high in grade 8. By 2000, only 
14 percent of the eighth-grade teachers reported “little/no” emphasis on data 
analysis content.

Changes by Content Area: Grade 4
	 Figure 6.2 shows performance in each of the five NAEP content areas for 
students in grade 4. Scale scores for content areas do not depict strength in one 
content area as compared with another, which means, for example, that analysts 

Table 6.1
Percentage of 4th and 8th grade students whose teachers report heavy, moderate, 
or little/no curricular emphasis in the content of the five strands assessed by 
NAEP

Heavy Emphasis Moderate Emphasis Little/No Emphasis

Number and 
Operations

4th 8th 4th 8th 4th 8th

1996 91 83 7 9 <1 2

2000 83 64 13 22 <1 3

2003 84 n.a. 11 n.a. <1 n.a.

Measurement

1996 20 16 62 56 16 22

2000 24 17 68 56 3 16

2003 23 n.a. 66 n.a. 5 n.a.

Geometry

1996 10 22 53 49 33 21

2000 20 23 67 55 7 10

2003 22 n.a. 66 n.a. 6 n.a.

Data Analysis

1996 8 14 39 44 41 30

2000 18 19 58 56 19 14

2003 23 n.a. 60 n.a. 12 n.a.

Algebra

1996 7 55 30 29 40 9

2000 16 58 53 29 26 3

2003 25 n.a. 54 n.a. 15 n.a.
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cannot appropriately say that students were best in measurement (score of 218) 
in 1990 or best in algebra and functions (score of 243) in 2005. The scale scores, 
however, are reasonable indicators of change in performance over time. As figure 
6.2 shows, the greatest gain from the period 1990 to 2007 for grade 4 students was 
in the area of algebra and functions. At grade 4, algebra and functions items in-
volve patterns and other types of algebraic thinking rather than traditional eighth- 
or ninth-grade algebra topics (e.g., equation solving). Prior to the publication of 
Curriculum and Evaluation Standards (NCTM 1989), little if any coverage of 
algebraic thinking was included in the elementary school curriculum; thus, we can 
reasonably assume that the increased emphasis on problem solving and algebraic 
thinking in the 1990s had substantial impact on the large achievement gains in the 
algebra and functions content strand.
	 Figure 6.3 provides an example of one of the algebraic thinking problems 
used on Main NAEP from 1990 to 2003. As with about one-third of the algebra 
strand items used at grade 4 in 2003, this item involves a pattern. In 1990, 34 
percent of students correctly solved this problem4. This increased to 40 percent in 
1992, 47 percent in 1996, and 55 percent in 2000 but then dropped to 52 percent 
in 2003. This item was also given at grade 8, where the percent correct increased 
from 50 percent in 1990 to 65 percent in 2003. Although these increases may 
not seem that great, they are substantially more than the increases on most other 
items. The fact that more fourth-grade students correctly answered the question 
in 2003 than eighth-grade students in 1990 is evidence of both the significance 
of the increase over time and of the fact that not a lot of emphasis was placed on 
patterns at the middle school level in 1990.
	 The second highest area of gain in grade 4 was number sense, properties, and 
operations5, increasing 28 points from 1990 to 2007. The items in this content 
strand focus on understanding of, and computation with, whole numbers, frac-
tions, and decimals and by the upper grades include integers and real numbers. 
Ratios, percents, and estimation are also assessed. Figure 6.4 gives an example 
of an item that assessed understanding of decimal values on a number line. In 
1992, 39 percent of grade 4 students correctly answered the problem. That rose 
to 41 percent in 1996, 51 percent in 2000, and 56 percent in 2005. NCTM’s  
Curriculum and Evaluation Standards (1989) argued for introduction of decimal 
concepts in grades K–4, and the dramatic increase in performance on this item is 
likely connected to this call for early study of decimals.

4. To assess students’ performance on a broad range of mathematics topics, Main NAEP 
used 181 grade 4 items and 197 grade 8 items in 2003. Each student completed only 15 
to 30 of those items, and thus percent correct on an item is based on those students who 
were asked to complete that item.

5. Not enough items were included in the data analysis, statistics, and probability strand in 
1990 to calculate a scale score. As figure 6.2 shows, more gain was made in this area than 
in number and operations between 1992 and 2007.



F
ig

. 6
.2

. G
ra

d
e 

4 
av

er
ag

e 
sc

al
e 

sc
o

re
 b

y 
co

nt
en

t 
st

ra
nd



96� Mathematics Curriculum: Issues, Trends, and Future Directions

	 Those who have been teaching at the elementary school level for a number of 
years may recall that very little geometry content beyond shape recognition was 
included at that level prior to the mid-1980s. Figure 6.5 is an example of a Long-
Term Trend NAEP geometry problem given to nine-year olds from 1982 to 2004. 
Twenty-five percent of students correctly found the perimeter of the rectangle in 
1982, and that dropped to 19 percent in 1986. Because this was a multiple-choice 
item, 25 percent of students should have responded correctly just by guessing; 
thus it appears very few students in the 1980s were experienced in computing 
perimeters. By 1990, the percent had returned to 25 percent; it increased to 29 
percent in 1994, 35 percent in 1999, and 51 percent in 2004. The growth on this 
item indicates that many nine-year-old students are now experienced in finding 
perimeters. As an aside, it is interesting to note that the most common incorrect 
response, selected by 29 percent of students in 2004, was option A (13 meters). In 
most instances, nine-year-old students have had little if any classroom exposure 
to problems involving area calculations, and this is evident in the fact that only 14 
percent selected option C (40 meters). The growth pattern on this item is similar 
to the growth pattern for geometry on Main NAEP (fig. 6.2). The results for this 
item, therefore, as for the geometry strand in general, give evidence that changes 
in curriculum, including those advocated in the NCTM Standards documents 
(1989, 2000), are closely tied to what students learn.

Fig. 6.3. Pattern problem used for grade 4 and grade 8

Peter wrote down a pattern of A's and B's that repeats in 
groups of 3. Here is the beginning of his pattern with some 
of the letters erased. Fill in the missing letters.

On the number line above, what number would be located at point P?

Answer: ___________________________

Figure 6.4. Number sense, properties, and operations item 
used for grade 4 and grade 8 

P

5.6 6.2 6.4
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Fig. 6.5. LTT perimeter item administered to nine-year-olds

Changes by Content Area: Grade 8
	 Figure 6.6 shows changes in scale score by content area for students in grade 
8. As can be seen in figure 6.6, the largest gain between 1990 and 2007 for any 
content area was the same as that for grade 4, algebra and functions. The scale 
score for this area increased from 261 to 285. Figure 6.7 contains an algebra 
and functions item that was used from 1990 to 2003 at grades 4, 8, and 12. Like 
many items in the algebra and functions strand at grade 8, this item assesses 
what would often be considered a prealgebra rather than a true algebra skill. 
Performance on the item rose more on this item than most grade 8 items, with 56 
percent of students answering the item correctly in 1990 and 63 percent of stu-
dents answering it correctly in 2003. The item was clearly very difficult for fourth 
graders. Although one would expect 25 percent to answer the item correctly by 
just guessing, performance ranged from 17 percent correct in 1990 to 24 percent 
correct in 2003. Grade 12 students had little problem with the item, with 78 per-
cent to 80 percent responding correctly each time it was administered.
	 The area with the next highest gain for grade 8 students, 22 points from 
1990 to 2007, was data analysis, statistics, and probability. Figure 6.8 shows 
a Main NAEP item that was used at grades 8 and 12 from 1990 to 2003. This 
item had one of the most dramatic gains of any on the NAEP, with 20 percent 
of eighth graders answering the item correctly in 1990, 23 percent in 1992, 32 
percent in 1996, 46 percent in 2000, and 57 percent in 2003. Although finding a 
mean has been common in textbooks for a number of years, few middle school 

17. What is the PERIMETER of this rectangle?

A)  13 meters 

B)  26 meters 

C)  40 meters 

D)  80 meters 

Figure 6.5. Age-9 LTT Item Involving Perimeter

8m

5m
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textbooks emphasized medians prior to the publication of the Standards (NCTM 
1989). Median is now a standard topic at the middle school level; thus the results 
from this item provide strong evidence that when a topic is covered, students will  
learn it.

 Fig. 6.8. Item involving median used at grades 8 and 12

	 Whereas the grade 8 results on the median item in figure 6.8 are heartening, 
the grade 12 results are of some concern. In 1990, 22 percent of twelfth graders 
correctly answered the median question, with the percent correct increasing to 
23 percent in 1992, 33 percent in 1996, and 41 percent in 2000, the last year the 
item was used at grade 12. These percents are almost identical to the grade 8 per-
cents—except for 2000, when twelfth graders were 5 percent points below eighth 
graders. The likely reason for the poor performance of twelfth-grade students on 
this item is that medians are a middle school topic and are not generally covered 
in high school classes. Students are apt to forget the difference between median 
and mode, as evidenced by the fact that the most common incorrect response to 
the item in figure 6.8 was E, which is the mode. In other words, the poor perfor-
mance of grade 12 students on the median problem is likely connected to the fact 
that they have not seen the term in several years rather than the fact that they do 
not understand the difference between median and mode.

Figure 7 Algebra and Functions Item Used at Grades 4, 8, and 12

What are all the whole numbers that make 8 –           > 3 true?

A) 0, 1, 2, 3, 4, 5

B) 0, 1, 2, 3, 4

C) 0, 1, 2

D) 5

Fig. 6.7. Algebra and functions item used at grades 4, 8, and 12

4, 8, 3, 2, 5, 8, 12
What is the median of the numbers above?

A) 4

B) 5

C) 6

D) 7

E) 8

Figure 8 Item Involving Median Used at Grades 8 and 12
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Changes by Content Area: Grade 12
	 Keeping in mind the change in grade 12 scaling, and thus the lack of com-
parable grade 12 scores after 2000, the gains by content area in grade 12 mir-
rored the minimal change between 1990 and 2000 in overall results at this level 
(fig. 6.1). Specifically, small but statistically significant gains were made in each 
content area between 1990 and 1992.Those gains were maintained in all content 
areas except number sense, properties, and operations, in which performance in 
2000 dropped back to near the performance level in 1990 (Kehle et al. 2004). 
One hypothesis that could explain the drop in this content area is that students are 
taking more advanced courses that do not repeat numbers and operations mate-
rial, and thus students have forgotten more about those concepts than concepts in 
the other areas that have more coverage in high school. The items in figures 6.7 
and 6.8 are clearly examples of such material.
	 Unfortunately, of the grade 12 items that have been used for more than sev-
eral years, a relatively small number have been released to the public, and thus 
looking at trends on individual items is difficult. On a few grade-12 problems 
used over a period of time, significant gains were made, and on others, significant 
deterioration in performance occurred. However, for the majority of items the 
percent of students correctly answering specific problems was relatively stable. 
This could reflect the fact that high school curricula have changed less in the past 
twenty years than curricula at the elementary and middle school levels.

What Do NAEP Results Say about 
Curriculum?
	 In addition to mathematics, National Assessment assesses precollege stu-
dents’ performance in art, civics, geography, U.S. history, reading, science, and 
writing. Reading is the only area that has been assessed as many times as mathe
matics, but the good news for mathematics teachers is that gains in mathematics 
achievement over time for grades 4 and 8 have been far greater than gains in any 
other subject area (Kloosterman and Walcott 2007). The achievement gains in 
mathematics at grade 12, although modest, are also higher than gains at grade 
12 in other subject areas. On the basis of this fact alone, one can argue that fo-
cused changes in curriculum across the country, particularly improvements rec-
ommended by NCTM (1989, 2000), had a positive impact on students’ learning. 
The gains by content area—and the performance patterns on the items discussed 
in this article—offer further evidence that the curriculum studied does make a 
difference. The greatest gains at grade 4 are in algebra and functions, the con-
tent strand for which no clear recommendations had been made before the 1989 
NCTM Standards. The greatest gains at grade 8 were also in algebra and func-
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tions, followed closely by data analysis, statistics, and probability, another strand 
highlighted by the Standards. With respect to the latter, curriculum has shifted 
from emphasis on simple sampling and finding means to much more robust cov-
erage of the fundamental ideas of probability and their application to a variety 
of problems. The poor performance of twelfth graders on the median problem in 
figure 6.8 is explainable if we assume that students forget such skills as finding 
a median and the meaning of terminology that they do not practice. Performance 
on items for which students can arrive at an answer without having to remember 
a specialized definition tends to be higher across periods when students are not 
exposed to such items. In short, data from NAEP give evidence of a positive 
relationship between what is taught and what is learned.
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Curriculum Alignment in an Era 
of Standards and High-Stakes 
Testing

Shannon W. Dingman

What mathematics should be the focus of the grades K–12 mathematics 
curriculum? How should the mathematics be sequenced and developed 

across grade levels? At what grade level(s) should specific mathematical content 
be emphasized? These questions have been a rich source of discussion and de-
bate in the United States for more than a century. Recommendations from nation-
al committees and organizations from as far back as the Committee of Ten report 
(National Education Association 1894) and present-day efforts of the National 
Council of Teachers of Mathematics (NCTM) in Curriculum Focal Points for 
Prekindergarten through Grade 8 Mathematics (2006) and the National Math-
ematics Advisory Panel’s Foundations for Success (2008) have provided input 
and guidance to debaters of these questions. However, given the long history of 
local control of public education in the United States, curriculum decisions have 
historically resided at the local (i.e., district or state) level. Indeed, curricular em-
phasis often reflects the needs and goals of those that comprise the local educa-
tional establishment—teachers, parents, administrators, and local citizens (Reys 
2006). Textbook developers have also played a prominent role in determining 
and sequencing the content and focus of the school mathematics curriculum.
	 Over the past thirty years, we have seen a gradual movement away from local 
control of curricular decisions in the direction of increased involvement of state 
and federal entities in developing educational policies and establishing curricular 
standards (Long 2003). This movement was spurred, in part, by comparatively 
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low performance of U.S. students on international assessments, and it resulted 
in calls for improvement, such as those described in A Nation at Risk (National 
Commission on Excellence in Education 1983). In response, many states acted 
to increase schools’ accountability for students’ learning by passing legislation 
aimed at improving public education. These measures included the development 
of curriculum frameworks (standards) that specified what students should learn 
and be able to do at particular grade levels or grade bands in specific subjects 
such as mathematics. States also moved to create mandatory annual examina-
tions that measured students’ performance with respect to the prescribed state 
standards.  During the 1980s alone, forty states created or refined their school 
accountability practices, and by 1992, forty-six states were administering state- 
mandated assessments to measure students’ achievement (Bauer 2000).
	 By 2001, the movement to hold schools accountable for students’ learning 
reached the national level with the passage of the No Child Left Behind Act 
(NCLB) (U.S. Department of Education 2001). Among the many provisions of 
the legislation, states were required to develop academic content standards—
commonly referred to as grade-level learning expectations (GLEs)—and yearly 
assessments in both reading and mathematics for grades 3–8 (Linn, Baker, and 
Betebenner 2002). The enactment of NCLB initiated a massive effort in many 
states to develop and implement grade-specific mathematics content standards 
(Reys et al. 2005). In fact, between 2002 and 2006, thirty-seven states as well 
as the District of Columbia and the Department of Defense Education Activ-
ity produced new or updated standards that outlined learning expectations for 
mathematics at specific grade levels (Reys 2006).
	 Since the passage of NCLB, state-level content standards have taken on in-
creased importance by defining what mathematics is to be taught at each grade 
level. Although teachers have typically relied heavily on the district-adopted 
mathematics textbook as an outline for the sequencing of mathematics topics, they 
are increasingly turning to state standards as their primary guide for identifying 
what mathematics should be taught and learned by students (Tarr et al. 2008).
	 The increased stature of state standards in determining the curriculum that 
is enacted in the classroom raises several questions. To what extent is there con-
sensus across states about the mathematics that should be emphasized, how it 
should be sequenced, and at what grades particular topics should be emphasized? 
What is the impact of variation in state standards on the development of grades 
K–8 textbook materials? Do textbooks emphasize and develop the mathematical 
content that students are expected to learn (and teachers are expected to teach) in 
each state?
	 Given the centrality of mathematics textbooks to the work of teachers and the 
increased importance of state standards in influencing curricular decisions, some 
have called for the development of a common set of content standards (national 
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standards) for the study of mathematics (Schmidt 2004; Borst and Rorvig 2006). 
Some proponents of common standards argue that setting uniform standards 
across the United States for the study of mathematics could improve the quality 
and focus of mathematics textbooks. That is, textbook publishers could work 
from the common standards to design curricular materials rather than customize 
textbooks to satisfy the needs of particular states (e.g., California and Texas), or 
repeat content across multiple grade levels or combine standards across multiple 
states to produce a “national” textbook (Reys 2006). Others argue that curricular 
innovation would be stifled with uniform descriptions of specified mathematical 
content, and that countries that have adopted common curricular standards con-
tribute less to curriculum development than countries without common standards 
(Usiskin 2007).
	 Although the debate continues about the value of common standards, little 
has been documented about the extent to which textbook series are “aligned” 
with particular state standards. The purpose of this article is twofold: to sum-
marize the extent of consensus of standards related to one mathematical topic 
across various states, and to describe the alignment of state standards involving 
this topic with mathematics textbooks. This analysis will provide a glimpse of 
the dilemmas facing textbook publishers as well as district leaders and classroom 
teachers.

Curricular Consensus across State 
Standards for Mathematics
	 NCLB legislation prompted many states to create new, more detailed, stan-
dards for mathematics. Across the United States, state teams of educators, often 
working independently, used a range of approaches (e.g., representative commit-
tees, panel of experts) and resources (e.g., Principles and Standards for School 
Mathematics [NCTM 2000] and the MAP Foundations for Success [Achieve 
2002]) in developing or refining state standards (Reys et al. 2005). The variety 
of methods used to create state standards and the diversity of opinions about the 
importance of various mathematical topics contributed to considerable variance 
in the grade placement of mathematical content in grades K–8.
	 In their analysis of forty-two state-level standards documents, Reys and her 
colleagues (2006) compared the grade level at which states expect instructional 
emphasis on particular topics. For example, as depicted in figure 7.1, state stan-
dards vary greatly concerning when the topic of addition and subtraction of frac-
tions is introduced (denoted as the initial learning expectation), over what grades 
the topic is developed (intermediate learning expectations), and at what grade 
level students’ proficiency in adding and subtracting fractions is expected (cul-
minating learning expectation).
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	 As illustrated, in some states (Arizona and Colorado) the topic is introduced 
at an early grade and developed over a period of years before proficiency is ex-
pected. Other states (Missouri and South Dakota) specify learning expectations 
for this topic at only one grade level in their standards. One would expect that 
the curriculum materials (e.g., textbooks) needed to support the goals specified 
by these state standards would be quite different in developmental trajectory and 
emphasis on fraction computation. Yet few of the states are large enough to war-
rant “state specific” editions of textbook materials.
	 The analysis by Reys and her colleagues concluded that although the set 
of learning goals specified for the entire grade K–8 spectrum is similar across 
states, the grade level at which emphasis on particular mathematics topics is 
specified varies considerably and is likely to lead to difficulties in constructing 
a focused and coherent set of national textbooks to guide instruction. The next 
section presents a closer examination of the alignment of a set of state standards 
with textbook series that are widely used in the United States.

Alignment between State Standards and 
Mathematics Textbooks
	 The differences in grade-level emphasis of particular mathematics topics 
specified in state standards undoubtedly creates a dilemma for textbook publish-
ers, who must take into account the expectations of different states in developing 
a national product. In designing a mathematics textbook series that aligns with 
multiple state standards, the results are generally a textbook series that does not 
align perfectly with any one set of state standards.
	 As a follow-up to the state standards analysis described earlier (Reys et al. 
2006), I conducted a study (Dingman 2007) to describe the extent to which wide-
ly used elementary and middle grades mathematics textbooks give instructional 
attention to the standards related to fraction concepts and computation in several 
states. For this analysis, the standards from a sample of states that employ a 
system of state-level textbook adoption (Texas, Florida, North Carolina, Geor-
gia) and a sample of states that have open adoption policies (New York, Ohio, 
Michigan, Washington) comprised the data set. These highly populated states 
were chosen to examine possible differences in curricular alignment between 
textbook-adoption states and nonadoption states.
	 Market share data from the 2004–05 school year (Education Market Re-
search 2005) were used to identify the two most popular elementary and middle 
grades textbook series. The results were as follows:

Grades K−6
	 Everyday Mathematics (Bell et al. 2002, 2004a, 2004b, 2004c)	
	 Scott Foresman−Addison Wesley Mathematics (Charles et al. 2004, 2005)
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Grades 6−8
	 Glencoe’s Mathematics: Applications and Concepts (Bailey et al. 2004)
	 Connected Mathematics Project (CMP) (Lappan et al. 2002)
	 In both groupings, the textbook selection included a publisher-generated 
curriculum (Scott Foresman−Addison Wesley Mathematics and Mathematics: 
Applications and Concepts) and an NSF-funded curriculum (Everyday Math-
ematics and CMP), which allowed for further comparisons of alignment across 
different types of curricular materials.
	 Instructional segments (e.g., lessons, activities, games, and problem-solving 
sections) across grades K–8 whose primary focus concerned fraction concepts 
and computation were compiled from each of the four textbook series. In addi-
tion, a set of generalized learning expectations related to fractions was devel-
oped on the basis of a review of many state standards and research on students’ 
learning of fractions. The set of generalized learning expectations provided a 
shared language and a common level of specificity to analyze and compare the 
grade-level expectations (GLEs) and textbook instructional segments. Each state 
GLE pertaining to fractions, along with each textbook instructional segment, was 
coded to this set of generalized learning expectations. The coded data sets were 
then compared to identify the level of alignment concerning attention to fractions 
across state standards and textbooks.
	 The results of the study indicate that the level of alignment of any particular 
state’s GLEs with the instructional segments found in the corresponding grade-
level textbook is generally greater than the alignment of the instructional seg-
ments with the GLEs. In other words, although many, if not most, state standards 
are covered in textbooks, these textbooks generally include additional instruc-
tional segments that are not specified at the particular grade level in the state 
standards.
	 The differences in alignment for a subset of states can be seen in table 7.1. 
For example, 90 percent (27/30) of Texas’s K–6 GLEs involving fractions are giv-
en instructional emphasis in the corresponding Scott Foresman−Addison Wesley 
Mathematics grade-level textbook (i.e., a grade 4 GLE was given instructional 
attention in the grade 4 textbook). However, of the 147 instructional segments 
pertaining to fractions identified in the Scott Foresman series across grades K–6, 
only 45 (31%) related directly back to Texas’ GLEs at the same grade level. In 
other words, 31 percent of the instructional attention devoted to fractions in the 
Scott Foresman series provided attention to 90 percent of Texas’ fraction GLEs 
across grades K–6. The remaining 69 percent of the instructional segments de-
voted to fractions in the Scott Foresman series did not provide instructional at-
tention to a Texas GLE at the same grade level. As seen in the table, these re-
maining instructional segments provided coverage to Texas GLEs specified at 
earlier grade levels (16%) (i.e., an instructional segment in the grade 3 textbook 
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that aligned with a Texas GLE found at grade 2 or earlier), GLEs designated at 
later grade levels (50%) (i.e., an instructional segment in the grade 4 textbook 
that aligned with a Texas GLE found at grade 5 or later), or with no Texas GLE 
(28%). As seen in table 7.1, the differences in curricular alignment between the 
Scott Foresman series and state GLEs were prevalent across multiple states; in 
fact, varying degrees of alignment between state GLEs and textbooks were evi-
dent for all four textbook series.

	 The relationship between state standards and mathematics textbooks is fur-
ther highlighted when the alignment for particular topics related to fractions is 
examined. Figure 7.2 illustrates the grade placement of GLEs and textbook in-
structional segments for adding and subtracting fractions across the elementary 

Table 7.1
Breakdown of Curricular Alignment between the State GLEs of Texas, Ohio, 
North Carolina, and Washington and the Grade-Level Textbook Instructional 
Segments in the Scott Foresman−Addison Wesley Mathematics Series1

Proportion of 
State GLEs 
Aligned with 
Instructional 
Segments

Proportion of 
Instructional 
Segments 
Aligned with 
State GLEs 

Proportion of 
Instructional 
Segments 
Devoted to 
State GLEs 
Found at 
Earlier Grade 
Levels*

Proportion of 
Instructional 
Segments 
Devoted to 
State GLEs 
Found at 
Later Grade 
Levels

Proportion of 
Instructional 
Segments 
Not Devoted 
to Any State 
GLE

TX 27/30 
(90%)

45/147 
(31%)

22/141 
(16%)

73/147 
(50%)

41/147 
(28%)

OH 27/33
(82%)

57/147 
(39%)

37/141
(26%)

59/147
(40%)

43/147
(29%)

NC 20/37
(54%)

57/147
(39%)

21/141
(15%)

44/147
(30%)

39/147
(27%)

WA 29/52
(56%)

44/147 
(30%)

14/141
(10%)

91/147
(62%)

31/147
(21%)

* 	The six instructional segments found in the kindergarten textbook were not included 
here, as they could not be devoted to earlier GLEs.

1. Because of the repetition of GLEs across grade levels, an instructional segment may 
give coverage to GLEs at the same grade level as well as to GLEs at an earlier or later 
grade level. Therefore, the percents of instructional segments devoted to GLEs at earlier 
grade levels, the same grade level, or later grade levels, or to no GLE at all, do not sum 
to 100 percent.
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grade levels (K–6). As illustrated, a general connection can be seen between the 
grade placement of state GLEs and the grade placement of instructional seg-
ments offering attention to the topic. Each state analyzed in this study initiates 
the topic of adding and subtracting fractions with like denominators in grade 3, 
4, or 5. Accordingly, the Scott Foresman series provides instructional coverage 
for this topic at each grade level. For example, the grade 3 Scott Foresman text-
book gives instructional coverage to adding and subtracting fractions with like 
denominators, which aligns with the grade 3 learning expectations described in 
Michigan and Georgia. However, the instructional coverage provided in the Scott 
Foresman grade 3 textbook does not align with any grade 3 GLEs for this topic 
in the remaining six states. These states specify introduction to this topic at grade 
4 or 5. Likewise, Michigan and Florida initiate the topic of adding and subtract-
ing fractions with unlike denominators in grade 4, which corresponds to the first 
instructional segment giving attention to this topic in both the Scott Foresman 
series and the Everyday Mathematics series. The variance in grade placement of 
learning expectations pertaining to addition and subtraction of fractions leads to 
repetitive coverage of this topic in the textbook series as the publisher works to 
meet the demands of the various states.

Fig. 7.2. Grade placement of GLEs and elementary textbook instructional 
segments concerning addition and subtraction of fractions with like and with 

unlike denominators across grades K–6
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	 These findings suggest that although a strong relationship exists between 
the curriculum as outlined in state GLEs and the content found in mathemat-
ics textbooks, this relationship varies by state and by textbook series. “Perfect” 
alignment, in which every GLE prescribed by the state is accounted for in the 
corresponding grade-level textbook while every instructional segment in each 
grade-level textbook gives attention to state GLEs at the same grade level with 
no additional coverage of other topics, does not exist in this sample. The fact that 
alignment between a particular state’s GLEs and any given mathematics textbook 
series is not “perfect” complicates both the job of textbook adoption commit-
tees at the state and local levels as well as the job of the classroom teacher. The 
alignment of standards and textbooks is therefore vital in ensuring clear visions 
about what mathematics should be the emphasis of instruction and at what grade 
level(s) particular content is to be taught.

Summary
	 The passage of the No Child Left Behind Act elevated the importance of 
state-level curriculum standards in the realm of public education. Historically, 
the mathematics textbook has guided much of the instructional decision making 
that occurs in the classroom. With the increased importance of adhering to state 
standards, teachers now must work to integrate the sometimes-conflicting mes-
sages sent by GLEs and mathematics textbooks to make instructional decisions 
and enact the mathematics curriculum in their classrooms.
	 The increased movement toward state and federal involvement in setting 
curriculum policy, along with the lack of consensus of learning expectations 
across states as well as between GLEs and mathematics textbooks, has prompt-
ed debates regarding the need to identify common standards for the learning 
of mathematics. By adopting common standards, proponents argue that all stu-
dents, regardless of the state in which they reside, will be given equitable learn-
ing opportunities and be held to the same expectations for learning mathemat-
ics (Schmidt 2004). Common standards might also provide clear and coherent 
messages to all stakeholders—teachers, administrators, policymakers, textbook 
publishers, and so on—regarding the mathematics that should be the focus of in-
struction at particular grade levels. Opponents of common standards point to the 
fact that among numerous national organizations, including NCTM, the College 
Board, and the American Statistical Association, no agreement is found about 
what mathematics should comprise the U.S. mathematics curriculum and when it 
should be taught. Such disagreement would therefore disenfranchise those who 
do not agree with the final set of standards (Usiskin 2007). Opponents also note 
that common standards would stifle reform efforts in schools and diminish the 
voices of local officials who serve different student populations. 
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	 Although compelling arguments can be made for and against a common 
set of standards (Borst and Rorvig 2006), state and federal policies are likely to 
continue to exert influence on the educational system in attempts to find ways 
to better support students’ learning. These policies necessitate an earnest debate 
about the need for common standards as a means of increasing curricular coher-
ence and focus and strengthening textbook-development processes in the United 
States.
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Preschool Mathematics 
Curricula

Julie Sarama 
Douglas H. Clements

Why worry about mathematics in the preschool? Shouldn’t “kids be al-
lowed to be kids”? Specific instructional attention to mathematics in pre-

school is crucial for at least three reasons.

Why Mathematics in the Preschool?
	 First, the common worry—that mathematics in preschool is a developmen-
tally inappropriate “pressure”—has no historical basis. Frederick Froebel, the 
inventor of kindergarten and preschool, was a crystallographer who believed that 
geometry and other mathematics stood at the core of the universe. Almost every 
aspect of his kindergarten crystallized into beautiful mathematical forms. As an 
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illustration, Froebel used “gifts,” such as cubes, cylinders, and other blocks, to 
teach children the geometric language of the universe. The cubes that children 
had made into play chairs and stoves later would be made into geometric designs, 
guided by the square grids etched into the top of their table. Later, these cubes 
would be laid into two rows of four each and expressed as “4 + 4.” In this way, 
connections were paramount: The “chair” became an aesthetic geometric design, 
which became a number sentence. Mathematical structure was everywhere.
	 However, during certain phases of history, Froebel’s mathematics was large-
ly forgotten or diluted (Balfanz 1999). As one striking example, early in the 
twentieth century Edward Thorndike emphasized health by replacing the first 
gift—small spheres representing points—with a toothbrush and replacing the 
first mathematical occupation with “sleep” (Brosterman 1997). Today, we realize 
that most strong early childhood programs, such as Froebel’s and Montessori’s, 
include attention to mathematics. In fact, children naturally engage in mathemat-
ics in their play and in their everyday lives and enjoy doing so.
	 A second reason that mathematics should play a crucial role is that early 
knowledge of mathematics is important to children’s later success in school. 
Children with underdeveloped mathematical ideas and skills at entry into school 
remain relatively low achievers throughout their education. A knowledge of 
mathematics in preschool correlates with tenth-grade achievement in mathemat-
ics (Stevenson and Newman 1986). Indeed, early knowledge of reading predicts 
subsequent success in reading. However, early knowledge of mathematics is a 
stronger predictor of subsequent success in mathematics.
	 Third, early knowledge of mathematics predicts not only subsequent success 
in mathematics but also subsequent success in reading (Clements and Sarama 
2009). Early attention to mathematics is especially important for children most 
at risk for school failure. A large gap is evident between children growing up in 
higher- and lower-resource communities in their exposure to, and thus knowl-
edge of, mathematics. Attention in preschool to mathematics can contribute to 
closing that gap.

What Mathematics in the Preschool?
	 NCTM’s Curriculum Focal Points for Prekindergarten through Grade 8: A 
Quest for Coherence (NCTM 2006) identifies a few essential mathematical top-
ics at each age level. The preschool Focal Points are based on research and the 
wisdom of expert practice, including the results of a national conference on early 
mathematics standards (Clements, Sarama, and DiBiase 2004).
	 In preschool, the focus is on number, geometry, and spatial sense. For exam-
ple, “[d]eveloping an understanding of whole number, including concepts of cor-
respondence, counting, cardinality, and comparison” (NCTM 2006, p. 11) focus-
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es on quantification, or assigning a number to a set of objects—the first, and most 
basic, mathematical algorithm. It also signals a developmental sequence. That is, 
children begin counting by learning number words in order—verbal counting. 
Next they learn to use one-to-one correspondence in counting objects. Then they 
develop an understanding of the cardinal principle—the idea that the last number 
word in counting tells you “how many” in the set of all objects counted. Later, 
preschoolers learn to use this knowledge to compare the number in two sets.
	 Recognizing the number in very small sets without counting is most chil-
dren’s first method of quantification. Such number recognition is called subitizing 
(Clements 1999). When children count, subitizing the number in the set encour-
ages and reinforces understanding of the cardinal principle. Subitizing also fol-
lows a developmental sequence.
	 Turning to geometry and spatial sense, children learn about shapes in the 
environment. Children identify and name shapes but also discuss their attributes. 
They describe the relative positions of objects by using important vocabulary, 
such as above and next to. Such language learning supports children’s develop-
ment of general cognition and literacy.
	 The third Focal Point for prekindergarten involves foundations for measure-
ment. Children identify measurable attributes and compare objects directly using 
those attributes. For example, children identify objects as “longer” or “shorter” 
and learn to differentiate whether “bigger” refers to length, area, weight, or some 
other attribute.
	 NCTM’s Curriculum Focal Points also identifies connections for each grade, 
supporting breadth and depth in the mathematics curriculum. For example, pre-
school children should apply the knowledge identified in the Focal Points in solv-
ing problems. In addition, preschool children should describe, sort, and compare 
physical and mathematical objects’ attributes, such as size, quantity, or shape.

How Should We Teach Mathematics in the 
Preschool?
How Much Mathematics Is Going On in Most 
Preschools?
	 Most preschoolers experience too little mathematics. Observations of a full 
day of three-year-olds’ lives revealed that 60 percent of the children had no struc-
tured mathematics experience, and few instances of mathematics teaching were 
recorded (Tudge and Doucet 2004). Preschool teachers said they believed that 
mathematics was important and that they engaged in mathematical discussions. 
Apparently, the teachers believed that selecting such materials as puzzles, blocks, 
games, songs, and finger plays was sufficient (Graham, Nash, and Paul 1997).
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	 The National Center for Early Development and Learning (NCEDL) studies 
report that children are not engaged in learning or constructive activities during a 
large proportion of the prekindergarten day (e.g., Winton et al. 2005). In fact, the 
students spent the largest part of their day, up to 44 percent, in routine, mainte-
nance activities, such as standing in line and in eating. An average of only 6 to 8 
percent of the day involved mathematics activities in any form. On average, less 
than 3 percent of the time were the children engaged in learning experiences, and 
fewer than half the children experienced these at all (Winton et al. 2005). Finally, 
even in one of the highest-quality programs, the Abbott programs, the quality of 
mathematics materials and teaching was rated as very low. In other literacy-based 
programs, the situation can be just as bad. A literacy-oriented (Bright Begin-
nings) program and a developmentally focused (Creative Curriculum) program 
included no more mathematics instruction than other programs (Aydogan et al. 
2006).
	 Another study (Farran et al. 2007) showed that a literacy-based curriculum 
might be inadequate. In a study of the Opening the World of Learning (OWL) 
program, which includes mathematics in its all-day, prescribed program, out of a 
360-minute day, only 58 seconds were devoted to mathematics. The program al-
lowed for little instruction, few opportunities for children to engage with mathe
matics materials, and few opportunities for children to talk about mathematics. 
The study found that none of the children gained mathematics skills through the 
program, and those beginning with higher scores lost mathematics skills over the 
year. They did gain in literacy skills, but only modestly.
	 Thus, present pedagogical practice is inadequate. What type of curricular 
activities might provide children with better mathematics experiences?

Mathematics in Play and throughout the Day
	 Most educators believe that children should learn throughout the day, espe-
cially in their play. Such learning is meaningful and motivating and promotes a 
view of mathematics as a positive, self-directed, problem-solving activity. Pre-
schoolers naturally engage in a kind of premathematical thinking in their play, 
even when teachers have not designed the activity to include mathematics. For 
example, the children showed at least one sign of such thinking during 43 percent 
of the minutes during which they were observed. They classified (2%), compared 
(13%; “This isn’t big enough to cover the table”), counted (12%), explored dy-
namics (5%; e.g., motions such as flipping), created patterns and shapes (21%), 
and explored spatial relations (4%) (Seo and Ginsburg 2004).
	 Materials such as sand, play dough, and blocks offer many rich opportuni-
ties for mathematical thinking and reasoning. Teachers can provide suggestive 
materials, engage in parallel play with children, and raise comments or questions 
regarding shapes and the quantity of things. For example, they might furnish play 
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dough and cookie cutters, and discuss shapes and congruence as children use the 
cookie cutters to make multiple “cookies” having identical shape; or they might 
discuss transforming play dough shapes into one another. One teacher told two 
students that she was “going to hide the ball” made of play dough. She covered 
it with a flat object, and pressed down. The students said the ball was still there, 
but when the teacher lifted the flat object, the ball was “gone.” This outcome de-
lighted the students, and they copied her actions and discussed that the ball was 
“in” the “circle” (Forman and Hill 1984, pp. 31–32).
	 Similarly, sociodramatic play can be naturally mathematical in the right set-
ting. In one classroom’s dramatic play area, teachers and children created a shop 
in which the shopkeeper fills orders and asks the customer for money (e.g., $1 for 
each dinosaur toy). Gabi was playing the shopkeeper. Tamika handed her a 5 card 
(5 dots and the numeral “5”) as her order. Gabi counted out five toy dinosaurs.

Teacher: 	 (just entering the area) How many did you buy?

Tamika: 	 Five.

Teacher: 	 How do you know?

Tamika:	 Because Gabi counted.

	 Tamika was still working on her counting skills, and trusted Gabi’s counting 
more than her own knowledge of five. The play context allowed her to develop 
her knowledge.

Janelle:	 I’m getting a big number. (She handed Gabi a 2 and a 5 card.)

Gabi:	 I don’t have that many.

Teacher:	 You could give Janelle two of one kind and five of another.

	 Gabi counted out the two separate piles and put them in a basket, and Janelle 
counted out dollars. She miscounted and gave Gabi $6.

Gabi:	 You need $7.

	 The sociodramatic play setting, with the teacher’s help, was beneficial for 
children at various levels of understanding and development.
	 This example illustrates an essential point. The “mathematics” observed in 
play is in the mind of the observer but not necessarily in the mind of the child. 
It forms a premathematical foundation, but it is not fully mathematical until the 
teacher guides the children themselves to mathematize it. Mathematizing involves 
reinventing, redescribing, reorganizing, quantifying, structuring, abstracting, and 
generalizing that which is first understood on an intuitive and informal level in the 
context of everyday activity (Sarama and Clements 2009). The teacher in the fore-
going example intentionally created mathematical situations. Further, her interac-
tions with the children made their play more reflective and more mathematical.
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	 Similarly, when a child turns or flips puzzle pieces in free play, that free play 
is good physical foundational activity. But when the teacher asks them to de-
scribe what they are doing—when they use mathematical tools on the computer 
to slide, flip, and turn shapes, or when they tell their friend “flip it over, it will 
fit perfectly”—then they are building mathematical understandings of geometric 
motions.
	 Thus, the teacher can employ many ways to make play and other everyday 
early childhood activities more mathematical. Such enriched everyday activities 
can help raise mathematics knowledge in Head Start classrooms (Arnold et al. 
2002). However, research indicates that such enriched activities are often not 
sufficient to promote strong learning of mathematics, especially for children who 
come to school without a history of opportunities to learn mathematics. How-
ever, organized learning of mathematics (and literacy) actually helps children 
play. Children in classrooms that engaged in mathematics were more likely to 
engage at high-quality level during free play time (Aydogan et al. 2006). Focused 
instruction is needed to close the gaps in young children’s mathematics knowl-
edge. Such instruction also promotes high-quality play.

Focused Activities
	 Focused activities can be whole-group, small-group, or individual. They can 
help organize and sequence the development of mathematics skills and ideas. 
Whole-group activities are efficient ways of demonstrating activities and us-
ing books to introduce mathematical ideas. Done well, they engage children in 
discussing mathematics. Effective strategies go beyond teachers’ presentations. 
Effective teachers ask children to turn to their neighbors to answer questions 
or share their ideas and strategies. In other activities, children might respond 
chorally or engage in movement games in which they must listen carefully and 
respond physically and verbally (e.g., talking to themselves as they perform the 
movement).
	 Small-group activities can also help children transfer what they have learned 
to tasks that have not been explicitly taught (Clements 1984). In effective small-
group activities, children work in pairs, switching roles. The teacher observes 
them carefully to learn what level of thinking they are capable of and to individu-
alize tasks to help each child develop the next level of thinking.
	 Individual children can interact with teachers or with high-quality technol-
ogy. Few preschool teachers use technology presently, even though educational 
technology can make a unique contribution to learning and teaching (Clements 
and Sarama 2003). As an example, computer tools can complement and expand 
what can be done with other media. Children might “break apart” computer-
based manipulatives, or make them larger or smaller, actions that are difficult or 
impossible with physical manipulatives. Computer tools can also track children’s 
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progress and help individualize tasks so that children continually advance toward 
the next level of thinking.

Combining Approaches
 An example that integrates several of these ideas began with preschoolers 
playing with a specially designed foam shape set from the Building Blocks proj-
ect (Clements and Sarama 2007a, 2007b), as illustrated in fi gure 8.1. They felt, 
stacked, and generally explored the shapes. The teacher observed whether they 
matched the shapes and by what method—for example, by side length or su-
perimposition (laying one on top of the other to fi nd shapes that match exactly, 
i.e., congruent shapes). Did children spontaneously begin to make pictures and 
designs? If so, how did they represent objects? Did they incorporate symmetry?

Fig. 8.1. A foam shape set from the Building Blocks project (Clements and 
Sarama 2007a)
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	 Later, the teacher led a whole-group discussion regarding puzzles familiar to 
children. The children talked to their neighbors and then shared some ideas with 
the whole group. Later, in small groups, the teacher worked with small groups 
of children who solved puzzles together, observing them and figuring out where 
they were in the “shape composing learning trajectory” (see fig. 8.2, from the 
Building Blocks project [Clements and Sarama 2007a]) and gradually introduced 
new puzzles to help each child progress.
	 Working with the software offered unique advantages. When using the com-
puter, the children solved puzzles at their level, receiving feedback and assistance 
as needed. For example, sometimes children covered too much, putting a shape 
over a puzzle section but also outside the puzzle area. When using physical ma-
nipulatives, they often do not notice this problem. The computer program alerted 
them to the problem and made the shape they placed semitransparent, so they saw 
through it to the puzzle pattern “underneath.” This feature helped them correct 
their work. When using the computer, the children also had to think about the ac-
tions they needed to take, such as turning or flipping a shape, to choose the right 
tool. That is, they had to think explicitly about geometric motions.
	 Finally, computer technologies made a special contribution because the 
management system assessed whether each child was successfully operating at 
any given level of the learning trajectory. If not, the child was gently and auto-
matically routed to activities at a lower level. Likewise, successful children are 
directed to more challenging tasks.
	 Over the course of several days, the children began to play not just with the 
shapes but also with mathematical ideas. For example, two children tried to com-
plete a puzzle in as many different ways as they could. One of them attempted 
to make a hexagon with every possible combination of shapes. The teacher en-
couraged all the children to make their own puzzles for others to solve using the 
Shape Puzzle—Free Explore tool in the software. The children created many 
arrangements with shapes, then pressed a button that converted them to outline 
puzzles. This activity led to a discussion of what made a “good puzzle.”
	 These examples illustrate combinations of whole-group, small-group, ev-
eryday, and computer activities (Clements and Sarama 2004, 2007a). These ap-
proaches have proved to be successful in helping young children learn mathemat-
ics. The teachers played an essential role in making the experience successful.

Summary
	 Mathematics has a long history in preschool. Building on that history is 
important because mathematical knowledge is an important part of a firm foun-
dation for students’ success in school. Children engage in intuitive mathemat-
ics naturally and enjoy learning basic ideas related to number, geometry, spatial 
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sense, and measurements. These ideas can be taught effectively using a com-
bination of teachable moments, informal but planned activities, and sequenced 
activities. A good preschool mathematics curriculum should integrate all these 
strategies.
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Supporting Focused and 
Cohesive Curricula through 
Visual Representations:  
An Example from Japanese 
Textbooks

Tad Watanabe 
Akihiko Takahashi 
Makoto Yoshida

Principles and Standards for School Mathematics (NCTM 2000) argues that 
“[i]n a coherent curriculum, mathematical ideas are linked to and build on 

one another so that students’ understanding and knowledge deepens and their 
ability to apply mathematics expands” (p. 14). Although both curricular focus 
and coherence are primarily concerned with specific mathematics content, visual 
representations used in mathematics curricula may play an important role in both 
teaching and learning with such focused and coherent curricula. This chapter 
examines how Japanese elementary school mathematics textbooks use pictorial 
representations across grade levels (Kroll and Yabe 1987). This analysis, in turn, 
generates ideas about how visual representations can be used to support a fo-
cused and coherent curriculum.
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Gradual and Intentional Development  
of a Representation System
	 Watanabe (2006) analyzed the use of pictorial representations in the two 
most widely used Japanese textbook series. He noted that these series used three 
types of pictorial representations of quantities. The first type is the most concrete 
and involves pictures of actual objects. Thus, if a problem is about three dogs 
and two dogs coming together, the student sees a picture of dogs. Moreover, the 
picture represents the exact quantities—not just to set the context of the problem 
but also to serve as a visual tool that the students can use to solve the problem.
	 The second type of pictorial representation of quantities used in these text-
books is pictures of common manipulatives. These items are more abstract than 
the actual objects. For example, the opening problem in the unit on multidigit ad-
dition in grade 2 involves finding the number of origami papers. Again, the exact 
quantities are represented by counting blocks, similar to base-ten blocks.
	 The last type of pictorial representation is mathematical diagrams, such as 
number lines and tape diagrams (see fig. 9.1 for an example). These representa-
tions are the most abstract of the three types. 

Fig. 9.1. A tape diagram representing the problem “We had some oranges. 
We gave away 16 of them. We now have 18 oranges. How many oranges did 

we have at first?” (Hironaka and Sugiyama 2006, 2B, p. 51)

	 The graphs in figure 9.2 show the relative frequencies of these types of rep-
resentations across grade levels. The percents shown are based on the total num-
ber of pages with these types of representations. Since some pages include more 
than one type of representation, the percents in a grade level do not add up to 100 
percent.
	 These graphs show a gradual shift toward more abstract representations as 
the grade level increases. Concrete and manipulative representations are much 
more common in lower grades. However, both series use more abstract represen-
tations in upper grades. These series make the shift from concrete to more ab-
stract representations gradually by paying close attention to possible difficulties 
children might encounter.

Number of oranges we had at first:          oranges

Gave away: 16 oranges Left over: 18 oranges

Fig. 9.1.  A tape diagram representing the problem, "We 
had some oranges.  We gave away 16 of them.  We now 

have 18 oranges.  How many oranges did we have at 
first?"  (Hironaka & Sugiyama, 2006, 2B, p. 51)
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	 To provide a more concrete illustration of how Japanese textbooks use picto-
rial representations, examples from a recently translated series by Hironaka and 
Sugiyama (2006)—a newer edition of Series 1 than shown in figure 9.2—are 
shown. In the grade 1 textbook, as discussed previously, the series often uses 
more concrete representations, such as pictures of actual objects or familiar ma-
nipulatives. For example, one of the first problems in the unit on addition in-
volves soccer balls (see fig. 9.3). Two ideas are worth noting.

Fig. 9.2. Types of pictorial representations used in two of the most widely 
used Japanese elementary school mathematics textbook series
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Fig. 9.3. An addition problem is represented pictorially with the actual 
objects and a familiar manipulative in grade 1 (Hironaka and  

Sugiyama 2006, 1, p. 27).

	 First, the series includes both the actual objects (i.e., soccer balls) and famil-
iar manipulatives (i.e., counting blocks that are included in children’s manipula-
tive kits). The students’ manipulative kits are typically provided to all first graders 
and contain such items as counting blocks, flash cards, model clocks, and plastic 
tiles (typically squares and isosceles right triangles). In the beginning of grade 1, 
which is the first year of schooling in Japan, the textbook generally includes pic-
tures of both concrete objects and manipulatives to help children understand that 
manipulatives may be substituted in place of actual objects to explore numerical 
relationships.
	 A second important feature of figure 9.3 is how the items are arranged. There 
is no logical necessity for the three soccer balls or the three counting blocks to be 
arranged in a straight line. However, the textbook series authors chose to do so as 
subtle groundwork for making the transition to a more abstract linear model that 
students will encounter later.
	 The transition to tape diagrams begins in grade 2 (see fig. 9.4), when stu-
dents see fourteen dark-colored counters and twenty-three light-colored coun-
ters that are lined up in a straight line. Moreover, the counters are enclosed in 
a “tape” that is divided into two segments. This particular diagram is used as 
the first step in the transition because a tape or a segment diagram represents 
quantities through a continuous quantity—length—whereas counting blocks 
and other manipulatives used by primary school students are discrete quanti-
ties. This shift is not a trivial matter for young children. Thus, the textbook 
series bridges the gap through a representation like this one, which juxtaposes 
both types of quantities.



Supporting Focused and Cohesive Curricula� 135  

Fig. 9.4. The first step in transition from counters to a tape diagram  
in grade 2 (Hironaka and Sugiyama 2006, 2A, p. 12)

	 Later in the grade 2 textbook, in a missing-addend problem, an unknown 
quantity is represented by a blank segment of a tape as shown in figure 9.5. This 
problem is the first time a continuous quantity—that is, a tape segment—is used 
to represent an unknown discrete quantity; however, the known discrete quantity 
is still represented by individual counters drawn inside the segment of the tape.

Fig. 9.5. The empty segment of tape is representing an unknown  
number in grade 2 (Hironaka and Sugiyama 2006, 2A, p. 20).
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	 Finally, at the end of grade 2, the textbook includes a unit focused on devel-
oping the tape-diagram representation. In this unit, students no longer use coun-
ters inside the tape segments. Instead, they simply label segments with numbers, 
or a blank box if the quantity is unknown, as shown in figure 9.1.
	 At the intermediate and upper elementary grade levels, students learn about 
multiplication and division operations in which two different quantities are in-
volved. These operations are typically introduced in equal-set situations. For 
example, the grade 3 unit on the division algorithm opens with the following 
problem:

	 There are 72 pieces of origami paper. When you divide them equally 
among 3 children, how many pieces will each child get?

This problem involves two quantities: the number of origami papers and the num-
ber of children. Thus, the textbook introduces the combination of a tape and a 
number line (fig. 9.6) to represent the problem situation.

Fig. 9.6. Combination of a tape and a number line to illustrate  
a division problem in grade 3 (Hironaka and Sugiyama 2006,  

3B, p. 13)

	 This form of representation (integrating tape and number-line models) con-
tinues to be used as students investigate multiplication and division of decimal 
numbers by whole numbers in grade 4. In grade 5, the series introduces a double-
number-line representation in the discussion of multiplication and division by 
decimal numbers (fig. 9.7).
	 As shown in figure 9.8, the double number lines continue to be used as stu-
dents explore other multiplicative concepts.

(children)3210

Figure 6. Combination of a tape and a number line to 
illustrate a division problem in Grade 3 (Hironaka & 

Sugiyama, 2006, 3B, p. 13).

pieces

72 pieces
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Figure 7. Double number line representing a division of 
decimal numbers in Grade 5 (Hironaka & Sugiyama, 2006, 

5A, p. 41).

There is a 6.2m pipe that
weighs 7.44kg.

How much would 1m of pipe
weigh?

(kg )

(m)

7.44

6.2
6

0

0

Fig. 9.7. Double number line representing a division of decimal  
numbers in grade 5 (Hironaka and Sugiyama 2006, 5A, p. 41)

Fig. 9.8. Double number lines continue to be used to  
explore different multiplicative ideas in grades 5 and 6  

(Hironaka and Sugiyama 2006, 5B, pp. 28, 65).
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Mathematical Significance of 
Representations
	 In the textbook series by Hironaka and Sugiyama (2006), such linear repre-
sentations as the tape diagram, number line, and double number line play a cen-
tral role in supporting students’ mathematics learning. In this section, we discuss 
why these representations are mathematically significant.
 	 Helping students become better problem solvers is a major focus of mathe
matics teaching in Japan. For problems involving computation, at least two impor-
tant factors should be considered. One is the ability to determine correctly what 
operation(s) must be used, and the other is having the skills necessary to carry out 
the selected operation(s). Clearly, both are important, but perhaps the former has 
become more crucial in recent years because one cannot complete this process 
with such tools as calculators and computers. Linear representations may serve as 
useful thinking tools for students to determine what operation(s) are to be done.
	 For example, primary school teachers know that missing-addend problems 
like the one represented as a tape diagram in figure 9.1 are difficult for students. 
A common error is to subtract 16 from 18 because 16 oranges were “given away.” 
However, if students can represent the problem in a tape diagram, it might help 
them realize that the missing quantity is a combination of the other two quanti-
ties; in other words, those two quantities must be added.
	 Consider the following problem adapted from a grade 5 textbook (Hironaka 
and Sugiyama 2006, 5A, p. 43): 

	 The white ribbon costs 240 yen for 1.2 m, and the blue ribbon costs 
240 yen for 0.8 m. Which ribbon costs more for 1 m?

Many students can intuitively tell that the price for 1 meter of the blue ribbon is 
more than 240 yen. Some students also believe that multiplication makes num-
bers bigger; therefore, they may think that the cost per meter will be obtained by 
the calculation of 240 × 0.8. However, a double-number-line representation (fig. 
9.9) may clarify the way quantities are related in this problem. In a multiplication 
problem, we are given the amount corresponding to 1 unit, that is, the multipli-
cand. However, in this problem, both situations involve determining the amount 
corresponding to 1.
	 With whole numbers, the operation necessary to determine how many in 
each group is fair-sharing division as shown in figure 9.6. As students explore 
division of decimal numbers in grade 5, the meaning of fair-sharing division 
is extended to the operation necessary to determine per-one quantity (fig. 9.7) 
whether the divisor is a whole number or a decimal number. Therefore, since 
we are determining the per-one amount in both instances, the same arithmetic 
operation—division—should be used regardless of the size of the divisor.
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	 Double number lines are a powerful thinking tool for problems requiring 
multiplicative reasoning. Multiplying and dividing fractions are arguably the 
most challenging topics in a grades K–8 mathematics curriculum. We illustrate 
how double number lines can be used as a thinking tool to solve problems in-
volving division by a fraction in grade 6. Let us consider the following problem 
(adapted from Hironaka and Sugiyama [2006, 6A, p. 17]):

	 With 3/4 dl of paint you can paint 2/5 m2 of board. How many m2 can 
you paint with 1 dl of paint?

The textbook includes the picture and double number line shown in figure 9.10. 

Fig. 9.10. A problem involving the division of fractions is introduced 
 with a picture and a double number line (Hironaka and  

Sugiyama 2006, 6A, p. 17).

	 As we saw earlier, students learn in grade 5 that when the per-one amount 
must be calculated, the necessary operation is division even if the divisor is not 
a whole number. Furthermore, grade 5 students have also studied that fractions 
can be written as decimal numbers. Therefore, students are expected to first de-
termine that this problem can be solved by dividing 2/5 by 3/4. Then students are 
to think about how 2/5 ÷ 3/4 can be calculated using what they have previously 

Fig. 9.9. Double-number-line representation clearly illustrates 
the relationship between the size of divisor and the size of 

quotient (Hironaka and Sugiyama 2006, 5A, p. 43).
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studied. Although this problem can be solved in many ways, the textbook illus-
trates one possible approach: 

 We can determine how much we can paint with 1 dl of paint by multi-
plying how much we can paint with 1/4 dl by 4. To fi nd how much we 
can paint with1/4 dl, we need to divide 2/5 (the amount you can paint 
with 3/4 dl) by 3.

This thinking process can be illustrated on a double number line as shown in 
fi gure 9.11. 

Fig. 9.11. Thinking process illustrated in a double number line

 Thus, the quotient of 2/5 ÷ 3/4 can be found by fi rst dividing 2/5 by 3, then 
multiplying the result by 4. In other words, 

2
5

3
4

2
5

3 4÷ =÷ = ÷ ×3 4÷ ×3 4.

In the Japanese textbook, students have already learned about multiplying and 
dividing fractions by whole numbers, so each of the two steps, that is, dividing 
by 3 and multiplying by 4, is a part of students’ prior knowledge. As a result, 
students know that 

2
5

3 2
5 3

2
5 3

4 2 4
5 3

÷ =3÷ =3
× ×5 3× ×5 3 5 3× ×5 3

× =4× =4 2 4×2 4
5 3×5 3

, and .

The textbook then poses the question, What fraction could we have multiplied 
2/5 by to get the expression 
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2 4
5 3
2 4×2 4
5 3×5 3

?

Again, from their previous investigation of multiplication of fractions, students 
can conclude that 

2 4
5 3

2
5

4
3

2 4×2 4
5 3×5 3

= ×= × .

Therefore, they see that 

2
5

3
4

2
5

4
3

÷ = × .

Or, in general, 
a
b

c
d

a
b

d
c

÷ =÷ = × .

 The double-number-line representation is a powerful thinking tool for stu-
dents and also for preservice teachers. For example, after preservice elementary 
school teachers have investigated fraction and decimal multiplication and divi-
sion using double-number-line representations, they were posed a problem like 
the following:

If a car can travel 90 miles on 4 gallons of gasoline, how far can it 
travel with 10 gallons of gasoline?

The teachers were able to easily represent this problem on a double number line 
(fi g. 9.12).

Fig. 9.12. Preservice elementary school teachers represented 
a missing-value proportion problem using a double number line.

 After examining this double number line, some of the preservice teachers 
noted that it was different from others they had seen previously. The difference 
was that there was no “1” in this double number line. However, they realized that 
once a “1” is placed on one of the number lines, the corresponding number can 
be determined by division. Once they determined the corresponding amount for 
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1, though, the missing quantity in the original problem could be determined by 
multiplication. Their thinking process is illustrated in figure 9.13. Thus, by using 
double number lines as their thinking tool, these preservice elementary school 
teachers figured out how to solve missing-value proportion problems.

Fig. 9.13. Preservice elementary school teachers used the  
double number line to solve the missing-value proportion  

problem meaningfully.

	 The double number line is also known as a “proportional number line” by 
Japanese mathematics teachers because it visually represents the underlying pro-
portional relationships between the two quantities involved in both multiplication 
and division problems. Therefore, for Japanese mathematics teachers, it is an im-
portant tool to bridge arithmetic to algebra in the sense of generalized arithmetic.

Concluding Thoughts
	 In this article, we examined how visual representations are used to support a 
focused and coherent mathematics curriculum in a Japanese elementary mathe
matics textbook series.  The three primary roles of visual representations are to 
(1) help students determine the necessary operation to solve a problem, (2) help 
students think about the process of calculation, and (3) serve as a thinking tool 
as they engage in challenging tasks. Moreover, visual representations can be a 
useful tool to bridge between elementary and secondary school mathematics.
	 The Japanese textbook series shows how visual representations can be used 
to support mathematical thinking. How these (and other) visual representations 
are actually developed in classrooms, using textbooks as support, is beyond the 
scope of this article. Nevertheless, we hope this brief analysis of the ways visual 
representations are used in Japanese textbooks raises some crucial issues to be 
considered in our quest for a focused and coherent curriculum in the United 
States. 
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Cross-National Curriculum 
Collaboration: Examples  
Based on Realistic 
Mathematics Education

Margaret R. Meyer 
Truus Dekker 
Frank Eade

In the early 1990s, the National Science Foundation funded thirteen different 
mathematics curriculum development projects (Reys 2008). Of the five proj-

ects at the middle-grades level, Mathematics in Context (MiC) (National Cen-
ter for Research in Mathematical Sciences Education and Freudenthal Institute 
1997–98) was unique because of its cross-national development team involving 
mathematics educators at the University of Wisconsin—Madison and curriculum 
developers at the Freudenthal Institute (FI) at the University of Utrecht in the 
Netherlands. More than sixteen years later, after contributing to a major revi-
sion of MiC, FI was again involved in a collaboration to develop Making Sense 
of Mathematics (MSM) for use in secondary schools in Manchester, England  
(Manchester Metropolitan University and Freudenthal Institute, in press). 
Oceans, cultures, and language separate these countries, and yet successful cur-
riculum collaborations have been possible. What are some lessons learned from 
these cross-national curriculum collaborations, and how might these lessons in-
form curriculum consumers?
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	 This article is a conversational reflection among the three authors—Meg 
from the United States, Truus from the Netherlands, and Frank from England—
on what we have learned about curriculum development as a result of our in-
volvement in cross-national curriculum collaborations. Following an overview 
of the curriculum projects, we offer our perspectives on important lessons 
learned.

The Development of Mathematics  
in Context
	 For six years, mathematics educators from the University of Wisconsin—
Madison (Tom Romberg, project director) collaborated with curriculum designers 
from the Freudenthal Institute at the University of Utrecht in the Netherlands to 
develop Mathematics in Context, a comprehensive curriculum for grades 5–8. The 
curriculum work of FI, grounded in the principles of Realistic Mathematics Edu-
cation (RME) (Webb and Meyer 2007), provided a model for developing mathe
matics curriculum for the United States. As part of a feasibility study, Romberg 
invited the FI director, Jan de Lange, to develop and test a data-exploration unit 
(de Lange et al. 1993, pp. 91–142) in suburban Milwaukee. The success of that 
collaboration paved the way for FI’s involvement in the development of Mathe
matics in Context.
	 Although most of the people involved in the development of MiC at the 
University of Wisconsin had little experience developing instructional materials, 
they did know school mathematics and United States (U.S.) schools and teach-
ers. This knowledge provided a balance for the people at FI who had many years 
of mathematics curriculum development experience but limited knowledge of 
U.S. schools and teachers. (For more information about curriculum reform in the 
Netherlands, see Case [2005]).
	 The development process included sending drafts of units back and forth 
between FI designers and the Wisconsin development team, preparing both the 
units and teachers for pilot testing, observing the units in pilot classrooms, revis-
ing the units, preparing the units and teachers for field testing, analyzing field-
test data and revising the units, and finally the publisher’s preparing the units 
for marketing, sales, and distribution. This seemingly linear sequence masks the 
complexity of the development process, a process made even more complex by 
the cross-national nature of the MiC project. Because first drafts of all forty units 
were written in the Netherlands and then “Americanized” at the University of 
Wisconsin, each team addressed new questions and learned new things. The team 
from the Freudenthal Institute wondered what prior knowledge could be assumed 
for students entering U.S. middle schools, what contexts U.S. students would 
understand and relate to, what an appropriate amount of focus on number skills 
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would be, and how much information U.S. teachers would need to be able to 
teach with these materials.
	 On the other side of the ocean, the team from the University of Wisconsin 
wondered what a “realistic” approach to teaching mathematics meant, how stu-
dents could engage in complex problem situations without extensive scaffolding, 
how individual units would fit into the entire curriculum, how the mathematics 
of a single unit would fit into the grade-level sequence and into the entire cur-
riculum, and what would be the best way to support the development of num-
ber sense and computational fluency while maintaining a balance across other 
content strands. These issues and others were the basis for planning meetings 
and countless e-mail messages, telephone calls, and overnight courier deliveries 
(MiC began in the days before electronic document delivery was possible) to 
negotiate the form and substance of the curriculum materials.
	 Fast forward to when MiC was complete and commercially available for 
use in schools. A team of mathematics educators at Manchester Metropolitan 
University in Manchester, England, introduced MiC into some local schools as 
part of a research project. On the basis of the success of that project, they began 
the development of Making Sense of Mathematics to teach “functional skills” to 
students aged 15–16 in their secondary schools.

The Development of Making Sense  
of Mathematics
	 A review of mathematics achievement in England (Smith 2004) identified 
the need to improve the ability of students to apply mathematics in the workplace 
on completion of school. In response, the government set up a number of initia-
tives including an overhaul of the assessment of functional skills at age 16, the 
age at which English students may opt to leave school. A major concern of a 
number of mathematics educators in England was understanding how to support 
students in developing their ability to apply mathematics. The experience with 
MiC suggested that if the goal is for students to use mathematics, then realistic 
contexts are needed as a source of the mathematics and as a support for learning 
the mathematics. A proposal was written to develop materials based on the prin-
ciples of Realistic Mathematics Education (RME) for use with low- to middle-
attaining fourteen- to sixteen-year-old students. The materials were to be similar 
to MiC in style but would take into account the particular needs of the identified 
student population in England.
	 Although MSM dealt with a different age group and a relatively narrow abil-
ity range, the principles that sustained MiC were also used to develop MSM. One 
important difference was the fact that the teacher professional developers and 
teachers involved in the project had substantial experience with RME. The first 
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challenge for the Freudenthal designers was to appreciate the range of achieve-
ment of the students, their previous experience with learning mathematics, and 
the social issues related to such students. The project built in visits to Manchester 
for FI developers so that the developers could observe students and classrooms 
firsthand.
	 The Manchester development team had its own set of questions and issues to 
resolve when first using MiC and later when developing MSM. The team mem-
bers wondered how English students and teachers would relate to a curriculum 
developed for United States students, whether adaptations would be necessary 
for the MiC contexts to be meaningful to English students, whether students 
would ever reach procedural fluency with the RME approach, and whether reach-
ing this procedural fluency should even be the goal of the curriculum.

A Conversation about RME and  
Lessons Learned 
	 We each learned many things through the process of developing Mathemat-
ics in Context and Making Sense of Mathematics. Our conversations about these 
lessons often centered on three important ideas from Realistic Mathematics Edu-
cation: context, number models, and progressive formalization.  What follows is 
an attempt to capture the content, if not the spirit, of these conversations. It might 
help to imagine the three of us talking over cups of tea. We invite the reader to 
pull up a chair and join us.

Context 
	 Meg: Before working on MiC, I had only experienced two uses of context 
in math curriculum materials: to promote the study of new mathematics and as 
a site to apply that mathematics. It never occurred to me that context could also 
be the source of the mathematics to be studied as well as an anchor for student 
understanding as it is in MiC (Meyer, Dekker, and Querelle 2001). I am still sur-
prised at how often I hear students identify a strategy or concept by naming the 
context in which they first encountered it. For example, the following problem 
(fig. 10.1) from the unit Comparing Quantities (Kindt et al. 2006) leads to several 
solution strategies and representations. Students who use MiC often refer to the 
“caps and umbrellas” problem when recalling the exchange strategy in which one 
quantity is exchanged for another.
	 Truus: What you don’t know is how hard it can be for the curriculum de-
signer to find the right context. First of all, you need a context to support the 
mathematics that you want students to learn. Second, you want a context that 
students will understand. This does not mean that they always have to have first-
hand experience with the context. For example, in MiC we make use of changing 
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water levels due to the tides to introduce periodic graphs. Even if students have 
not lived by oceans, they have heard of tides and can make sense of the situation. 
In another context, we talk about cell division to illustrate the concept of expo-
nential growth. For the sake of the mathematics, we simplify the science aspects 
of the context. The resulting context is no longer real in a strict sense, but it is 
realistic, and the student can begin to use it to make sense of the mathematics. 
Finally, it is a bonus if students are interested in the context.
	 Meg: While we are talking about context, we should mention that one cannot 
take for granted that a context that works in one country will necessarily work in 
another. For example, in one MiC unit we used ship locks to develop ideas about 
negative and positive numbers. With all the waterways in the Netherlands, your 
students are probably very familiar with how locks work to move a ship from one 
water level to another, but the same is not true in the U.S. I remember preparing a 
group of teachers to teach that unit and, despite my best efforts, they were hope-
lessly confused by the context. They could not keep straight which set of doors 
was open and which set was closed and whether the water level was going up or 
going down. After working through twelve difficult pages of this context, I finally 
recommended that they move on to the next section, which presented a context 
that was more familiar to them. The locks context might have worked if they had 
more time to develop it, but as it was, instead of supporting the mathematics, it 
got in the way.
	 Frank: Some of our teachers using MiC in England worried their students 
would have trouble doing problems involving American dollars instead of British 

Figure 1. Caps and umbrellas problem

What is the price of one umbrella? One cap?

Fig. 10.1. Caps and umbrellas problem
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pounds. In fact, it took the students very little time to adjust, although they some-
times wrote the pound sign with the answer instead of the dollar sign. The context 
was not the important thing; it was the mathematics that the context supported. 
When context works well, it supports the learning of the mathematics without 
getting in the way of that learning.

Number Models
	 Meg: The use of number models to support understanding of number re-
lationships and operations is another area where I had a lot to learn during the 
development of MiC. Bar models, ratio tables, and number lines are some of the 
models I first experienced in MiC. When we first encountered number models, 
the distinction between a model of and a model for (Streefland 1993; Gravemeijer 
1999) was important for the U.S. development team to understand. After many 
discussions and examples, here is how I think about it. Imagine a context in which 
children are sharing submarine sandwiches. A rectangular bar can be used as a 
model of a submarine sandwich, and then one can cut the bar into fractional parts. 
The rectangular bar is a natural abstraction of the original context. After repeated 
experience using a rectangular bar as a model of various situations, students can 
use that same abstract bar as a model for other situations involving fractional 
parts (e.g., in a classroom of 20 students, 7 students have 2 or more pets) or to 
compare and compute percents of quantities (e.g., 15% tip on different restaurant 
totals), even though a rectangular bar might not be a natural representation as it 
is with a submarine sandwich.
	 Truus: That is a good explanation for this concept. The rectangular bar can 
be used to model many situations, and the visual nature of the model supports 
students’ understanding. Of course, the last step in this process is for students 
to be able to leave behind the use of the models and to solve the problems us-
ing formal, short procedures. Another important number model is the ratio table 
(Middleton and van den Heuvel-Panhuizen 1995), and I remember that this mod-
el was entirely new to both the U.S. and U.K. development teams. The ratio table 
can support multiplication and division of whole numbers and fractions. Figure 
10.2 shows one way that a ratio table might be used to solve the problem: 

	 Notebooks are shipped with 25 notebooks in one package. Jason or-
dered 575 notebooks. How many packages will arrive?

	 The ratio table also helps students organize and solve problems involving 
proportional reasoning, because it is much more intuitive than the usual cross-
multiply algorithm. As a visual representation, ratio tables, like the bar model, 
can help students organize their thinking and ground their understanding of 
the procedures they support. In Dutch we say, “Een foto is meer dan duizend 
woorden,” which I think you translate as “A picture is worth a thousand words.”
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 Frank: Exactly! The value of the visual nature of the number models is one 
of the lessons I learned about MiC when our teachers began to use it. At fi rst, 
whole-class discussions evaluating the variety of strategies to solve a problem 
usually took place at only a verbal level: the teacher or students talked and oth-
ers listened, making little use of visual representations. Now we are much more 
aware that drawings or models that are visible to all help both short- and long-
term shifts in students’ understanding. We also see how images can support 
learners as they move beyond the models into more formal mathematics.
 Meg: As I remember, when your teachers began to encourage the use of 
number models, students and teachers had to make adjustments to an important 
classroom norm about note taking. Can you talk about how students use note-
books in the U.K. and how teachers had to adjust expectations as a result of using 
number models?
 Frank: Yes, that is a good story that emphasizes the need for professional de-
velopment. Our students are encouraged to record their class notes and problem-
solving attempts in notebooks that are assigned to them at the beginning of each 
school term. Students are instructed to use the notebooks in an organized and tidy 
fashion, since the notebooks are technically the property of the school system 
rather than the individual student. An unexpected consequence of this classroom 
norm was observed during a MiC lesson involving the use of the bar model to 
calculate a percent of a number, for example 80 percent of 240. Students were 
told they should use a percent bar, which is a form of the bar model. There are 
many different ways to do so with a percent bar. One method (see fi g. 10.3) uses 
reasoning similar to that of a ratio table.
 Students fi nd 10 percent (24), then 20 percent by doubling (48 = 2 × 24), 
and then reason that 80 percent of 240 is the same as 240 less 20 percent 
(240 – 48 = 192). After a few moments’ thought, most students got out their rul-
ers and notebooks and proceeded to draw very precise percent bars in the form 
of rectangles with carefully measured sides and right-angle corners. Anticipating 

Figure 2. A ratio table solution

Figure 3. A percent bar solution

Fig. 10.2. A ratio-table solution
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their strategy, some students even measured out the bar so as to accurately be able 
to fi nd 10 percent and 20 percent. The students were clearly able to represent the 
problem using the percent bar, but the whole process took signifi cantly more time 
than was intended. Making the percent bar had become an end in itself rather 
than a means to an end.  There were two likely reasons for this misunderstanding: 
one was the classroom norm about the use of the notebook, and the other was not 
thinking of the percent bar as a visual “thinking tool.” After this misunderstand-
ing was pointed out, the teacher and his students (and I) were all happy to be able 
to use the “rough and ready” approach to drawing percent bars and ratio tables. 
This, however, is still an ongoing issue because government inspection of schools 
involves looking at the children’s books, and neatness is one of the factors used 
in judging a school’s performance.
 Truus: I did not realize that Dutch textbooks, assessments, and national ex-
ams were very “visual” until my American and English colleagues pointed it out. 
In developing MiC, we sometimes found it hard to explain that visuals, which 
include photographs, drawings, and models, are much more than just “something 
nice” to make a page look more inviting and that by conveying meaning about 
the context, they support students’ thinking. Without the carefully chosen picture, 
students would not be able to do the problem in the same way. This realization led 
to heated discussions when the publisher wanted to substitute a carefully chosen 
picture with one that was perhaps better looking but mathematically different or 
even meaningless in our eyes.
 Meg: The development team didn’t always get it right, either. For example, 
the unit Comparing Quantities (Kindt et al. 2006) begins with a story about Pau-
lo, who goes to the market with two sheep and one goat to trade for bags of corn. 
The solution involves several exchanges. Figure 10.4 shows part of the problem 
context and accompanying illustrations that appeared in the 1998 and 2006 edi-
tions.
 Notice that the less detailed 1998 illustration provides a visual representation 
of that part of the story, whereas the 2006 version conveys no useful information, 
even though the art is more attractive and color had been added. I am embar-
rassed to acknowledge that although we saw that a change in art had been made 

Figure 2. A ratio table solution

Figure 3. A percent bar solution
Fig. 10.3. A percent-bar solution
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by the publisher, we did not understand the difference this change would make in 
students’ access to the problem until after it was in print. The old black-and-white 
1998 version is a much better illustration to further students’ understanding.

Progressive Formalization
	 Truus: As a beginning teacher, I could not understand why many of my stu-
dents did not seem to “get it” after I did my best to explain a procedure as clearly 
as I could and after they had practiced with problems of the same kind I showed 
them. Other times, students seemed to understand what they were doing, but 
when they encountered a similar problem a few months later, they would say, 
“We do not know how to do this. We never learned this before.” I saw many 
American and English teachers struggle in the same way. From my work with 
curriculum development at the Freudenthal Institute, I learned about the idea of 
progressive formalization as a way to structure a learning sequence.
	 The sequence starts with a real problem, that is, a problem evolving from the 
world around us that is worth solving. This is the context idea we talked about 
earlier. At first, students are encouraged to try to solve the problem with informal 
strategies drawing on their understanding and suggested by the problem context 
itself. The next step in the learning sequence is to present other problems, which 
at first may seem different to students because the context might differ. However, 
these problems are based on the same mathematical content and can be solved 
with preformal strategies that become increasingly sophisticated over time. Mod-
els, such as the ratio table and bar model, are often used in the informal and pre-

Figure 4. Old and new problem illustrations 

1998 illustration                                            2006 illustration

Fig. 10.4. Old and new problem illustrations
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formal stages. Although we want the use of models to be a stage from which most 
students ultimately move on, students should always be able to go back to them to 
anchor their understanding. The last step, albeit a difficult one to take, is to leave 
the context altogether and look only at the mathematical content, to generalize, and 
be able to reason in a purely mathematical way using formal notations and algo-
rithms. Some students may not be able to take this formal step or may take a long 
time to do so. But at least they have learned some mathematical tools at the infor-
mal and preformal levels that they can remember and use with understanding.
	 Frank: Progressive formalization of students’ learning can be illustrated 
with an iceberg model (Webb, Boswinkel, and Dekker 2008). Figure 10.5 shows 
an example of the model for the learning of fractions.

	 The tip of the iceberg model shows formal representations of the learning 
that we usually hold as a goal for school mathematics. Below the waterline lies 
the informal and preformal understanding and strategies that are the foundation 
for the formal mathematics. If we focus only on the tip of the iceberg, we will 
most likely fail to see how much more students understand. This is especially 
true if students are not encouraged to reveal their understanding through expla-
nations of their strategies. This model helped us see where contexts—models of 
and models for—and formal mathematics fit in with MiC, and most important, it 
helped me see just how different Realistic Mathematics Education was from the 
top-level/formal approach that is typically used in England.
	 Meg: Of all the ideas we have been talking about, the idea of progressive for-
malization has the most significant implications for teaching and teacher devel-

Fig. 10.5. An iceberg model for fractions
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opment. With traditional materials, teachers typically introduce concepts or skills 
and students practice them at a formal level within a relatively short period of 
time. At the end of the teaching unit, teachers expect a certain degree of mastery. 
With MiC and MSM, the instructional trajectory often extends beyond a unit, 
across a grade level, or even across the entire curriculum. As a result, we need to 
work with teachers so that they do not try to move students to the formal level too 
fast. Instead, we encourage teachers to value the informal strategies that students 
come up with and to trust that, over time, the students will move from informal 
strategies to preformal and finally to formal strategies involving conventional 
notations. For many teachers, trusting the curriculum materials requires a big 
leap of faith. This is where professional development is essential. Professional 
development can allow teachers to experience these ideas as if they themselves 
were students. We can model for them what it means to expect students to explain 
how their strategies relate to the problem situation and how they end in a solution 
to the problem. When we are successful in modeling this outcome, teachers get 
excited about their own learning and they never want to go back to their old ways 
of teaching.
	 Truus: After visiting a large number of schools, both in the U.S. and in the 
U.K., I realized that teachers and their professional development are a very im-
portant factor in the success of a curriculum implementation. It is possible, for 
example, to use MiC in a very traditional way. In England as well as in U.S. 
classrooms, I often meet teachers who are afraid to give students control and 
responsibility of their own learning. Teachers often feel they are the ones solely 
responsible for the teaching and learning process, instead of the students’ gradu-
ally taking ownership and being responsible for their own learning, with guid-
ance, of course, from the teacher. We, the designers of MiC, often built in hurdles 
in the form of difficult problems to challenge the students. The teachers’ response 
to these problems is often, “My students cannot do this,” and then they proceed to 
break the problems down into small, feasible steps or in many cases to show the 
students how to do the problem. No challenge remains if every problem you try 
to solve is made easy for you.

Final Thoughts
	 The process of cross-national curriculum collaboration resulted in significant 
learning for each of us. Had we not limited ourselves in the paper to important 
insights, we would certainly have talked about more mundane collaboration is-
sues, such as learning to translate from Dutch to English, interpreting unfamiliar 
contexts, and the like. Those issues turned out to be much less important than one 
might have imagined. Instead, what came to the forefront were important fea-
tures of curricula based on the ideas of Realistic Mathematics Education—such 
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things as context, number models, progressive formalization, and the growth of 
teachers and the learning of students through the use of well-designed curriculum  
materials.
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Three Perspectives on the  
Central Objects of Study for  
Grades Pre-K–8 Statistics

Randall E. Groth

Over the course of the past two decades, the subject of statistics has gained 
prominence in grades pre-K–8 mathematics education. Once a subject 

largely reserved for study at the upper secondary school and university levels, 
such prominent national groups as the National Council of Teachers of Mathe
matics (NCTM) and the American Statistical Association (ASA) now recom-
mend that students begin to build knowledge of statistics early on in their school 
experiences (NCTM 2000; Franklin et al. 2007). These recommendations have 
contributed to a proliferation of curricular materials designed to support grades 
pre-K–8 students’ learning of statistics as well as inclusion of learning expecta-
tions related to statistics in state-level standards. Now the study of statistics is 
part of students’ earliest experiences in mathematics classrooms.
	 Given the acknowledged importance of statistics, a foundational question 
remains regarding curriculum development: What are the fundamental objects 
of study in grades pre-K–8 statistics? Chazan (2000) argued that even with a 
long-standing curricular mainstay such as algebra, debate could ensue over what 
the fundamental objects of study should be. Algebra can be conceptualized, for 
example, as the study of generalized arithmetic, the study of equations, or the 
study of functions. Although all three notions of algebra may enter a curriculum 
at some point, they exert varying degrees of influence over how the subject is 
portrayed. Curriculum developers and teachers must make decisions about which 
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points of view should be included, which should be emphasized, and which order 
of presentation should be used. Such decisions shape the curriculum and un-
avoidably bring some objects of study to the foreground while moving others to 
the background.
	 In grades pre-K−8 statistics, choices must be made about which fundamen-
tal objects of study should be moved to the foreground. As with algebra, several 
competing candidates are found. In this article, I consider three such candidates: 
(1) mathematical procedures, (2) mathematical concepts, and (3) the process of 
statistical investigation. I focus on these three approaches because they exert dif-
ferent amounts of influence in prominent curriculum documents that seek to guide 
grades pre-K–8 statistics instruction: state-level standards, NCTM’s Curriculum 
Focal Points for Prekindergarten through Grade 8 Mathematics (NCTM 2006), 
and the American Statistical Association’s Guidelines for Assessment and 
Instruction in Statistics Education (GAISE) Report (Franklin et al. 2007). 

A Two-Part Framework for Selecting 
Objects of Study
	 One important consideration in selecting objects of study for curriculum 
development is the level of cognitive demand that tasks related to those objects of 
study may require. Henningsen and Stein (1997) described four prevalent levels 
of cognitive demand of tasks. They can be summarized, from lowest to highest 
level, as follows:

•	 Memorization—tasks involving memorization and recitation of facts, 
rules, or definitions

• 	 Procedures without connections to concepts or meaning—tasks using 
previously learned procedures

• 	 Procedures with connections to concepts and meaning—tasks requir-
ing the use of a procedure while prompting students to engage with the 
procedure’s conceptual underpinnings

• 	 Doing mathematics—tasks having no prespecified solution method, in 
which students must draw on conceptual understandings to devise so-
lution strategies

Engaging students in classroom tasks with higher levels of demand is funda-
mental to the instructional vision outlined in NCTM’s Principles and Standards 
for School Mathematics. Therefore, the three candidates for central objects of 
study in statistics are discussed subsequently relative to their likelihood to sup-
port tasks with high levels of cognitive demand.
	 A second consideration in evaluating candidates for central objects of study 
is how each one portrays the discipline of statistics. Some statisticians have ar-
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gued that statistics should be considered a discipline in its own right rather than 
a branch of mathematics (Cobb and Moore 1997). Although mathematical tools 
are essential to doing statistics, so are many activities that are primarily non-
mathematical, such as constructing survey questions, designing experiments, and 
understanding the contexts in which data are generated (Groth 2007). Hence, a 
curriculum that maintains fidelity to the discipline of statistics will include op-
portunities to develop nonmathematical, as well as mathematical, competencies 
for doing statistics.

Candidate 1: Mathematical Procedures
	 Grades pre-K–8 curricula sometimes portray statistics as the study of mathe
matical procedures. Some learning expectations in state-level curriculum docu-
ments for statistics are illustrative:

• 	 Grade 3: “Construct and interpret bar graphs using scale increments of 
1, 2, 5, and 10” (Georgia Department of Education 2006, p. 5).

• 	 Grade 5: “Determine the mean of a given data set or data display. As-
sessment limit: Use no more than 8 pieces of data and whole numbers 
without remainders (0–1000)” (Maryland State Department of Educa-
tion 2004, p. 10).

Such curricular statements imply that the instructional end goal should be to 
prepare students to perform mathematical procedures for producing graphs and 
summary statistics.
	 Emphasizing mathematical procedures as central objects of study in statis-
tics has some potential drawbacks. One danger is that tasks with low levels of 
cognitive demand can begin to dominate the curriculum. Bakker (2004) observed 
that grades pre-K–8 statistics instruction is often simplified to carrying out proce-
dures for producing graphs and such summary statistics as the arithmetic mean. 
Students’ tasks in such situations are lowered to the cognitive demand level of 
“procedures without connections” because they can be accomplished simply by 
using procedures directly from prior instruction.
	 Not all statistical tasks that emphasize mathematical procedures, however, 
necessarily fall at low levels of cognitive demand. Some tasks may require stu-
dents to exhibit flexibility in thinking as well as in executing procedures. Cai 
(2000) provided an example of such a task related to the procedure for determin-
ing the arithmetic mean (fig. 11.1). Sixth-grade students used several different 
strategies to solve the task. Some found out how many hats should be sold in 
week 4 by working with a related scenario in which seven hats were sold each 
week (average as a leveling process). Others represented the situation with an 
algebraic equation and solved it. Still others used a guess-and-check strategy, 
trying out different values for the number of hats sold in week 4. The task had a 
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considerable amount of cognitive demand because no prespecifi ed solution path 
was given for students to follow.

Fig. 11.1. Task involving the arithmetic mean (from Cai [2000], 
reprinted by permission of Taylor & Francis Ltd.)

 Even if tasks at high levels of cognitive demand are posed in curricula that 
emphasize mathematical procedures, care must be taken to maintain fi delity to 
the discipline of statistics. If mathematical procedures are the central objects of 
study, then nonmathematical elements of the discipline could be lost. With the 
arithmetic mean, for example, students need to go beyond just having a deep 
understanding of the mathematics of the mean. In doing statistics, context must 
be taken into account in deciding how to deal with a task such as the following 
(Groth 2006, p. 41):

Students’ grading task: Seven 100-point tests were given during the fall semes-
ter. Erika’s scores on the tests were 76, 82, 82, 79, 85, 25, and 83. What grade 
should Erika receive for the semester?

In this situation, the decision of whether to use the mean must be justifi ed on the 
basis of problem context. Multiple viable decisions based on contextual interpre-
tations are possible. I encourage readers to pose this task to their own students, 
encouraging them to produce multiple reasonable conclusions by arguing from 
the problem context.

Week 1

Week 2

Week 3

Week 4

Figure 1
Task Involving the Arithmetic Mean

Angela is selling hats for the Mathematics Club. This picture shows the number 
of hats Angela sold during the first three weeks.

How many hats must Angela sell in Week 4 so that the average number of hats 
sold is 7? Show how you found your answer.
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Candidate 2: Mathematical Concepts
	 Another way to frame the study of statistics in grades pre-K–8 is to concen-
trate on the development of mathematics concepts. This approach appears to be 
embraced by NCTM’s Curriculum Focal Points (2006). In discussing the treatment 
of data analysis in the Focal Points, Schielack and Seeley (2007) stated that prior 
to grade 8, “students use data sets as contexts for strengthening their understand-
ing of number, operations, measurement, and geometry” (p. 208). For example, 
in kindergarten, the examination of data sets is recommended as a context to help 
develop counting abilities: “they [students] might collect data and use counting to 
answer such questions as, ‘What is our favorite snack?’” (NCTM 2006, p. 12). In 
this instance, the mathematical concept of counting is foregrounded, rather than 
such aspects of data collection as conjecturing whether similar results would be 
obtained if the snack survey were done in a different class.
	 Emphasis on mathematical concepts as central objects of study continues 
through grades 3–5 in Curriculum Focal Points. Schielack and Seeley char-
acterized statistical data representations as “important problem-solving tools 
in grades 3–5 that strengthen the development of concepts related to number 
and operations” (p. 209). Throughout grades 3–5, Curriculum Focal Points 
recommends the study of graphical representations of data because of the 
opportunities they provide to develop students’ conceptions of number and 
operations:

•	 Grade 3: “Addition, subtraction, multiplication, and division of whole 
numbers come into play as students construct and analyze frequency 
tables, bar graphs, picture graphs, and line plots and use them to solve 
problems” (p. 15).

•	 Grade 4: “Students continue to use tools from grade 3, solving prob-
lems by making frequency tables, bar graphs, picture graphs, and line 
plots. They apply their understanding of place value to develop and use 
stem-and-leaf plots” (p. 16).

•	 Grade 5: “Students apply their understanding of whole numbers, frac-
tions, and decimals as they construct and analyze double-bar and line 
graphs and use ordered pairs on coordinate grids” (p. 17).

Emphasizing the study of graphical displays for helping students develop deeper 
understanding of number and operation can be contrasted with analyzing graphi-
cal displays to make inferences about the populations and contexts they repre-
sent. Although students may still make such inferences as they study graphs, the 
foregoing curricular statements characterize the mathematics of graph construc-
tion as the central objects of study rather than “reading beyond the data” to make 
inferences from graphs.
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	 After grades 3 through 5, “Curriculum Focal Points for grades 6 through 
8 continue with the use of data as a context for problem solving and further de-
velopment and application of mathematical ideas” (Schielack and Seeley 2007, 
p. 209). Mathematical ideas developed by using data sets in grades 6 through 8 
include attention to proportions and percents. Specifically, in grade 7, “Students 
use proportions to make estimates relating to a population on the basis of a sam-
ple. They apply percentages to make and interpret histograms and circle graphs” 
(NCTM 2006, p. 19). To illustrate how this curricular statement emphasizes the 
study of mathematical concepts, it may be helpful to consider a possible refor-
mulation that places nonmathematical elements of statistics as central objects of 
study: “Students formulate and use techniques to draw trustworthy samples from 
populations of interest. They choose appropriate mathematical tools, including 
proportions, to support their investigations.” This reformulation emphasizes the 
study of techniques for drawing trustworthy samples rather than the mathemati-
cal concept of proportion. In so doing, it shifts the study of mathematics concepts 
to the background while placing an essential nonmathematical aspect of statisti-
cal practice in the foreground.
 	 Curricula that emphasize mathematical concepts can promote tasks that fall 
at a variety of levels of cognitive demand. Consider the following two tasks:

	 Sample task 1: At Central Middle School, 42% of all students partici-
pate in athletics. If you picked a random sample of 50 students from 
the school, how many would you expect to be athletes?

	 Sample task 2: A biologist captured and tagged 40 fish from a lake. A 
week later, she caught 30 fish, and 12 of them were tagged. On the ba-
sis of her data, how many fish do you believe are in the lake?

Sample task 1 requires the straightforward computation of 42 percent of 50, and 
hence could be considered a low level of cognitive demand for students who have 
learned how to make this computation and have done similar items in the past. 
Sample task 2, although incorporating similar mathematics concepts, is not as 
straightforward. It requires proportional reasoning rather than simple execution 
of a previously learned procedure. Students must reason that the biologist likely 
tagged two-fifths of the fish in the lake, and then determine which number has 
40 as two-fifths of its value. Although the problems appear to address similar 
concepts, the complexity of thought needed to solve each one varies. 

Candidate 3: The Process of Statistical 
Investigation
	 Whereas the NCTM Curriculum Focal Points recommend a grades pre-K–8 
statistics curriculum that emphasizes the study of mathematical concepts, the 
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ASA report Guidelines for Assessment and Instruction in Statistics Education 
(GAISE) (Franklin et al. 2007) suggests a curriculum that foregrounds the pro-
cess of statistical investigation. The GAISE report uses a four-component sta-
tistical problem-solving process to frame its curricular recommendations for 
statistics instruction (fig. 11.2). The four components of the framework are (1) 
formulate questions, (2) collect data, (3) analyze data, and (4) interpret results. 
Students are to engage to some extent with each of the four components as they 
progress through three developmental levels (A, B, and C) related to the study 
of school statistics. As they move through the levels, they study progressively 
more sophisticated ideas about such concepts as experimental design, variability, 
descriptive statistics, and ways in which context should influence the interpreta-
tion of data. The three developmental levels are not tied to specific grade levels, 
although activities recommended for levels A and B bear resemblance to those 
often done in elementary and middle school.
	 Some examples from level A of the GAISE report illustrate the experiences 
that students may have in a statistics curriculum that emphasizes the process of 
statistical investigation: 

•	 “Example 1: Choosing the Band for the End-of-the-Year Party— 
Conducting a Survey” (Franklin et al. 2007, p. 24): Students are to 
conduct a survey to determine the types of music preferred by students 
at their grade level. The goals of the activity include helping students 
recognize individual-to-individual variability, begin to understand the 
mode as a useful measure for summarizing categorical data, and think 
about if and how the survey results might vary for different populations.

•	 “Example 2: Growing Beans—a Simple Comparative Experiment” 
(Franklin et al. 2007, p. 28): Students plant beans in two different 
locations—one that is well lit and another that is poorly lit. They are to 
compare the growth in each location. As they graph the data, students 
are to attend to the shapes of the distributions of heights of the bean 
plants in the two locations.

In example 1, a curriculum that foregrounds mathematics procedures may in-
clude the same type of activity but may emphasize mathematical actions, such 
as counting, rather than statistical actions, such as understanding variability and 
thinking about the extent to which the findings can be generalized. Likewise, 
if the activity described in example 2 were included in a curriculum emphasiz-
ing mathematical procedures, proper graph construction might be portrayed 
as the central activity of value rather than understanding the idea of statistical 
distribution.
	 Once students have developed foundational ideas related to statistical inves-
tigation at level A, they are to continue to build on them at level B. In the first 
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example (“Choosing the Band for the End-of-the-Year Party”), the GAISE report 
recommends that students use more sophisticated mathematical and nonmathe
matical ideas to analyze the situation. The mathematical ideas include using per-
cents and fractions to make comparisons between populations rather than just 
report raw frequencies. The nonmathematical ideas to be explored include how 
rephrasing the survey question might be likely to influence the data that are ob-
tained. Mathematical and nonmathematical ideas are to be used in tandem to 
support the statistical problem-solving process.
	 Readers should note that the statistical problem-solving process portrayed as 
a central object of study in the GAISE document differs in at least two subtle, yet 
important, ways from the mathematical problem-solving process. First, the role 
played by real-world contexts differs. Cobb and Moore (1997, p. 803) captured 
this difference by stating,

In mathematics, context obscures structure. Like mathematicians, data analysts 
also look for patterns, but ultimately, in data analysis, whether the patterns 
have meaning, and whether they have any value, depends on how the threads 
of those patterns interweave with the complementary threads of the story line. 
In data analysis, context provides meaning.

Mathematical problem solving ultimately peels back context to uncover under-
lying mathematical structure, whereas the GAISE statistical problem-solving 
process emphasizes that context must be considered throughout the process so 
that interpretations of data are viable. A second major difference between statisti-
cal and mathematical problem solving is the certainty with which the results of 
the problem-solving process should be reported. In mathematics, it is common 
practice to pose a question with the intent of producing a proof that contains a 
decisive answer, but in statistics it is common practice to pose a question and then 
gather evidence to form conditional conclusions. This means that the statistical 
problem-solving process often yields multiple viable solutions to problems of 
interest rather than single, decisive answers.

What Value Is Obtained in Identifying 
Central Objects of Study?
 	 I encourage readers to reflect on the central objects of study in the statis-
tics curriculum they teach: examine the standards documents that drive the cur-
riculum, as well as available instructional activities and assessments. Readers 
who are teacher educators or policymakers can do the same sort of reflection in 
regard to the curriculum the teachers they serve are responsible for teaching. Is 
the curriculum structured around the study of mathematical procedures, mathe
matical concepts, or the process of statistical investigation? Thinking carefully 
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about the central objects of study can help one avoid pitfalls that occur when 
implementing the different types of curricula.

Avoiding Pitfalls When Mathematical Procedures 
or Concepts Are Central Objects of Study
	 As mentioned previously, mathematical procedures are portrayed as central 
objects of study in some state-level mathematics standards. Some of the state-
level standards are currently under revision in response to the NCTM (2006)  
Focal Points document. Hence, many mathematics teachers are likely to find 
themselves in the position of being charged with implementing standards for 
statistics that emphasize either mathematics concepts or procedures. Teachers 
generally are not at liberty to overhaul state guidelines completely, yet some 
classroom-level actions can be taken to maintain the quality of statistics instruc-
tion in such situations.
	 First, teachers can attend to the level of cognitive demand in the tasks given 
to students. Rather than focus on the execution of an algorithm, a teacher can 
make subtle shifts in questioning to help students dissect the problem. For ex-
ample, rather than ask students to calculate the mean of a data set, ask them to 
examine and discuss how removing different values from the set influences the 
mean. Also, such comparative questions as “How does the mean compare to the 
median as a measure of center?” prompt students to examine the mathematics 
behind each procedure and to understand the concept that both can be used to 
estimate centers in some data sets. Producing data sets to fit a given summary 
statistic instead of asking students to compute the summary statistics is also use-
ful—students might be given a correlation coefficient and be asked to devise a 
scatter plot that would produce it. Such tasks help students develop deeper under-
standing of the mathematics of procedures commonly used in statistics, as well 
as the meanings and purposes of the procedures, thus helping build conceptual 
understanding.
	 Students must also be provided with opportunities to engage in the non-
mathematical activities of the process of statistical investigation. These elements 
can easily be lost in curricula that emphasize mathematics concepts or proce-
dures. Students should, at least occasionally, be asked to design questions of their 
own to investigate. They need to develop an appreciation of the role that context 
plays in choosing and interpreting statistics. This outcome can sometimes be ac-
complished by slight shifts in teachers’ questioning, as illustrated in the “grade 
assigning” task earlier in this chapter. When confronted with this type of novel 
situation, students may invent their own summary statistics or graphs to make 
sense of the task, much as statisticians do when they encounter a new type of 
problem. Student-invented strategies can then be compared with the conventional 
summary statistics and graphs suggested by the curriculum.
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Avoiding Pitfalls When the Process of Statistical 
Investigation Is the Central Object of Study
	 When students are allowed to devise their own graphs and summary statis-
tics during statistical investigations, they may not focus on conventional tools 
of the discipline of statistics. A legitimate concern, then, is that students may 
not become familiar with tools commonly used by statisticians if the process of 
statistical investigation is central to the curriculum. If this outcome were to oc-
cur, students would have difficulty understanding the statistical claims that infuse 
everyday discourse. Developing such statistical literacy is a primary motivation 
for the inclusion of statistics in school curricula. Given this concern, teachers 
charged with teaching such curricula need to actively seek opportunities that 
compare student-invented strategies with those used by statisticians. Students 
can be encouraged to examine how the functions their strategies serve compare 
with those of conventional statistical tools.
	 A second possible pitfall associated with curricula that place the process of 
statistical investigation in the foreground is related to level of cognitive demand. 
Henningsen and Stein (1997) described two ways that investigation-oriented tasks 
can break down: (1) When the teacher allows completely unstructured explora-
tion and students disregard the original task, and (2) when the teacher lowers the 
level of cognitive demand in the task in response to pressures from students for 
the “right” answer or procedure. Maintaining a middle ground between these 
two extremes is vital to ensuring that curricula emphasizing statistical investiga-
tion are successful. To avoid the first extreme, teachers can reflect on such ques-
tions as “Which student ideas should I seize to move the class forward?” and the 
perhaps more difficult question, “Which student-created strategies will not be 
fruitful to pursue?” To avoid the second extreme, the question “How can I avoid 
giving away too much of the problem?” is helpful to consider for each task.

Conclusion
	 The consequences associated with choosing any of the three candidates for 
central objects of study for grades pre-K–8 statistics should be weighed carefully. 
Choosing the first candidate, mathematical procedures, can at times encourage 
classroom tasks at low levels of cognitive demand. This scenario appears to have 
played out to an extent in U.S. classrooms (Bakker 2004), alongside the produc-
tion of state-level standards documents for statistics that emphasize mathemati-
cal procedures. Choosing the second candidate, mathematical concepts, can help 
remedy an overemphasis on mathematical procedures. However, nonmathemati-
cal aspects of doing statistics may be underemphasized in such an approach. 
Choosing the third candidate, the process of statistical investigation, helps en-
sure study of nonmathematical aspects of statistics alongside mathematical ones.  
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Under such an approach, teachers must monitor students’ work constantly to 
steer students’ statistical investigations in productive directions.
	 Although teachers are on the “front lines” in terms of implementing cur-
ricula, curriculum developers and writers of standards also have important roles 
to play in offering high-quality experiences to grades pre-K–8 students studying 
statistics. Curriculum materials and standards documents should not, intention-
ally or unintentionally, emphasize tasks with low levels of cognitive demand nor 
deemphasize nonmathematical aspects of doing statistics. Helping students carry 
out statistical investigations is an important goal that should go hand in hand with 
learning the mathematics of statistical tools with understanding. In curriculum 
materials and standards documents that take care to maintain fidelity to the disci-
pline of statistics, learning the mathematics of statistical tools with understand-
ing will support rather than overshadow the goal of helping students become 
critical consumers and producers of statistical investigations.
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Designing Curricula to Expand 
and Extend Mathematical 
Knowledge

Debra I. Johanning

A coherent curriculum develops deep mathematical understanding by focus-
ing on important topics of study. It also extends understanding “with work 

in later grades building on and deepening what students have learned in the ear-
lier grades, without repetitious and inefficient reteaching” (NCTM 2006, p. 5). 
Schielack and Seeley (2007) suggest that as a topic is developed across grades, 
the instructional emphasis should shift from the background to the foreground 
and then again to the background.
	 This article presents examples of instructional tasks that illustrate how their 
placement in a middle-grades curriculum provides both foreground and back-
ground emphasis that can lead to a deeper understanding of fractions. What is 
notable about the tasks is that they are not taken from curriculum units that ex-
plicitly focus on fractions. Instead, the tasks are taken from units that follow the 
explicit study of fractions. The first instructional task, taken from a curriculum 
unit on decimal operations, places fractions in the foreground, explicitly using 
fractions to support the development of new content, decimal operations. The 
second task, taken from a curriculum unit on similarity, places scale factor and 
area-perimeter relationships in the foreground. Fractions emerge in the back-
ground when a fractional scale factor is used. These two examples show ways 
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in which the curriculum can be organized to provide continuing, nonrepetitive 
experiences for students, leading to a deeper understanding of fractions and a 
richer, more connected understanding of mathematics.

Designing Curricula That Support 
Learning to Use Mathematics 
	 For students to learn to use mathematical knowledge in meaningful ways, 
they need planned instructional opportunities that connect the concepts and tech-
niques studied to other areas of mathematics. Consider fractions as a topic of 
study for middle-grades students. When learning about fractions, instruction 
typically focuses on developing part-whole reasoning; the role of the numerator 
and denominator; how the numerator and denominator are related; comparing 
and ordering fractions; developing meaning for, and connections among, dif-
ferent forms of representations (fractions, decimals, and percents); equivalence; 
benchmarks and estimation; and operations with fractions. However, research 
has shown that when new settings are encountered, such as area and perimeter, 
similarity, and ratio and proportions, students do not readily use what they have 
previously learned about fractions (Johanning 2008). Once students have learned 
about fractions, they need to have repeated opportunities learning how to use this 
knowledge in other mathematical contexts.
	 The perspective argued here is that if a curriculum is cumulative rather than 
repetitive, it should provide opportunities to use the knowledge gained about a 
particular topic in subsequent instructional units. For example, understanding 
how to use fractions is tied to understanding situations in which they can be used 
and the various ways that fractions and other mathematical content are connected 
(Thompson 1995). Streefland (1991) refers to this interaction of knowledge as in-
tertwining the learning lines. Rather than single out fractions as a topic of study, 
one might consider how fractions are situated in other mathematical content and 
contexts. Designers of curriculum materials should carefully consider what as-
pects of fractions are appropriate as part of a curriculum unit on fractions and 
what aspects of fractions are better served by introducing them in curriculum 
units where they can be used as a context for learning new material and to sup-
port connections across content.
	 One goal of a coherent curriculum is to continually build on and connect 
the big ideas from one unit or topic to others so that students use previously 
explored concepts and procedures in new settings. This approach is intended to 
promote fluency and proficiency in one topic while exploring another (Lappan 
and Phillips 1998). Learning to use fractions involves taking what students know 
and understand about fractions (learned in fraction curriculum units in which 
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fractions are in the foreground) and recognizing how and when those ideas and 
skills can be applied in new settings. This outcome implies more than assigning 
application homework problems. Instead, fractions should be placed in either the 
background or foreground of instructional tasks that students explore and discuss 
when learning new mathematical content. Doing so requires a conceptualization 
of curriculum that looks across grade levels and across mathematical content. 
In line with the goals of Curriculum Focal Points for Prekindergarten through 
Grade 8 Mathematics (NCTM 2006), this organization of a curriculum empha-
sizes connections across mathematical topics.
	 The tasks presented in this article are taken from instructional units that fol-
low two sixth-grade units focused on learning about fractions and fraction op-
erations. In this curriculum, fractions are foregrounded or explicitly developed 
in these two sixth-grade units. Fractions are not formally retaught in seventh or 
eighth grade. However, across the remainder of sixth grade, in seventh grade, and 
in eighth grade, students revisit fractions in other instructional units, such as area 
and perimeter, decimal operations, probability, similarity, integers, ratio and pro-
portion, and algebra. Found in these subsequent units are tasks that use fractions. 
Some of these tasks place fractions in the foreground, and others place them in the 
background. Examples illustrating each approach are shared in the next section.

Learning to Use Fractions by 
Foregrounding Fractions  
with Work on Decimal Operations
	 One approach to the development of decimal operations is to build the 
meaning of computational procedures for decimal operations on prior work with 
fraction operations. Consider the task Adding and Subtracting Decimals (Lappan 
et al. 2008) in figure 12.1. After students discuss what they know about place 
value and adding and subtracting in situations with money, they are introduced 
to a task (fig 12.1) that asks them to use what they know about place value and 
money, as well as measurement, to solve a set of decimal addition and subtraction 
problems. 
	 After working on this task, students share their strategies for finding decimal 
sums and differences. Although an algorithm may emerge, the goal of this discus-
sion is to push students to consider why they need to line up the decimal points. 
The discussion of this task is used to set up a second task, in which students write 
their original decimal-number sentences using fraction form with denominators 
of 10, 100, 1000, and so on. The fraction-number sentences are recorded in the 
second column of the table in the Adding and Subtracting Decimals task. Draw-
ing from what was learned in an earlier curriculum unit on fraction operations, 
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Figure 1. Questions to Guide Discussions Related to Adapting 
Curriculum Materials

ADDING AND SUBTRACTING DECIMALS TASK

Every year, the students at Memorial High School volunteer to clean local 
highway roadsides. Each club or team at the school is assigned a section of 
highway to clean. One member of a club measures out each member’s part 
of the section of the highway using a trundle wheel. A trundle wheel can 
measure distances in thousandths of a mile.

A.  Solve each problem. Write a mathematical sentence using decimal 
notation to show your computation. Record your sentence in a table 
like the one below. 

 You will add to your table in the next problem.

Person Number Sentence
(decimal notation)

(Leave this column blank 
for the next problem.)

Carmela

Pam

Jim

Teri

1. Carmela signed up to clean 1.5 miles for the cross-country 
team. It starts to rain after she has cleaned 0.25 of a mile. How 
much does she have left to clean?

2. Pam cleans 0.25 of a mile for the chorus and cleans another 
0.375 of a mile for the math club. How much does she clean 
altogether?

3. Jim, a member of the chess club, fi rst cleans 0.287 of mile. He 
later cleans another 0.02 of a mile. How much of a mile does he 
clean altogether?

4. Teri doesn’t notice that she fi nished her section of highway until 
she is 0.005 of a mile past her goal of 0.85 of a mile. She claims 
she cleaned nine-tenths of a mile. Is she correct? Explain.

B.  1. Explain what place value has to do with adding and subtracting  
 decimals.

2.  Use your ideas about place value and adding and subtracting 
decimals to solve the following problems:

 a. 27.9 + 103.2 b. 0.45 + 1.2

 c. 2.011 + 1.99 d. 34.023 – 1.23

  e. 4.32 – 1.746 f. 0.982 – 0.2

Fig. 12.1. Adding and Subtracting Decimals task, adapted with permission 
from Lappan et al. (2008)
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the techer asks the students, “How does the fraction method help explain why 
you can line up the decimals and add digits with the same place values to find the 
answer?” (Lappan et al. 2008, p. 11).
	 This question is posed as the entry point to a discussion in which students 
make connections between the use of common denominators with fractions and 
adding values with the same place value. For example, renaming 0.25 + 0.375 as 
25/100 + 375/1000 leads students to use what they have learned about fraction 
addition and rewrite the fraction form of the problem using the common denomi-
nator of 1000. Renaming in fractional form (250/1000 + 375/1000) parallels one 
strategy for adding decimals, in which a zero is annexed so both addends have the 
same number of digits after the decimal point. However, the important connec-
tion to be made here is that both addends are made out of the same-sized parts of 
the whole. With either approach, using decimals or using fractions, thousandths 
are being added to thousandths.
	 This situation provides an opportunity to discuss why decimal points should 
be lined up when adding and subtracting decimals. Drawing on the previously 
developed notion of “adding common denominators” as a case of adding like 
units, teachers can use fractions to develop an algorithm for adding and sub-
tracting decimals that is based on place value. This algorithm can also be linked 
with whole-number addition and subtraction operations in which place value is 
aligned so that the units being combined are the same type or size.
	 When teachers develop decimal operations by foregrounding fractions, stu-
dents are positioned to use what they already know about fraction operations 
to make sense of decimal addition and subtraction. In this example, students 
have an opportunity to make a connection between fractions and decimals, with 
fractions being used as a building block to support new learning. By integrating 
fraction and decimal operations, students expand their conception of place value, 
place value as an indicator of the size of the unit, the role of the unit, concep-
tual understanding of the meaning of addition and subtraction, and the written 
representation of number to yield a rich understanding of number and operation. 
From a curricular perspective, this trajectory also has implications for algebra, in 
which like terms are combined when adding and subtracting.
	 Similarly, fraction multiplication and division algorithms can be used as a 
building block for decimal multiplication and division. That is, students can be 
asked to solve decimal multiplication or division problems by converting the 
problem into fraction form and then reflect on how carrying out the operation in 
fraction form can be used to help them make sense of decimal form. Placing frac-
tions in the foreground of work with decimal operations can potentially support 
students’ ability to learn to use prior mathematical knowledge as a tool to make 
sense of new mathematical problems they encounter.
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Using Fractions in the Background When 
Studying Similarity and Scale Factor
	 A second approach that can be used to integrate and develop topics across 
the curriculum is to place one topic in the background of work on another. In 
contrast with the design of the decimal operation task that directly referenced 
or foregrounded fractions in the task, fractional values can be used as quanti-
ties in a task but not be directly referenced. In the example presented here, the 
foregrounded topic of scale factor and perimeter-area relationships is initially ex-
plored using whole-number quantities. However, once basic concepts are estab-
lished, students begin to explore tasks or situations in which fractional quantities 
are included. When fractions are placed in the background of the task, students 
need to address whether concepts that work with whole numbers will also work 
when fractions are used. The example that follows illustrates the point.
	 During a seventh-grade unit on similarity, students explore the relationship 
between scale factor and perimeter and the relationship between scale factor 
and area. Using whole-number scale factors, students begin with original fig-
ures (rectangles) that they scale up using 2, 3, and 4 as respective scale factors. 
They compare the original and scaled figures to determine the side length, perim-
eter, and area of each. Students record their findings, indicating how the scaling 
changed the perimeter and area (see table 12.1).

	 A discussion leads to the conjecture that when a scale factor of 2 is applied, 
the area of the scaled rectangle is 4 times the area of the original rectangle. This 
relationship is signified in the table by writing “× 4” in the area column. By look-
ing at each scale factor and the change recorded in the area column of the table, 
students establish that the relationship between the area of the original figure and 
that of the scaled figure was found by squaring the scale factor.
	 In the task Scale Factors and Similar Shapes (Lappan et al. 2006), students 
apply a scale factor of 2 1/2 to a 4-by-8 rectangle and then determine both the 
new area and the new perimeter1. Although students were comfortable when each 

Table 12.1 
Relative Change in Perimeter and Area of Rectangle, Given a Scale Factor

Scale Factor Perimeter Area

2 × 2 × 4

3 × 3 × 9

4 × 4 × 16

1. The original problem stated the scale factor as 2.5, but throughout the problem, students 
interchanged 2.5 and 2 1/2.
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side length was multiplied by 2 1/2, with the perimeter becoming 2 1/2 times 
larger, they were struggling to figure out what was happening to the area. Using 
diagrams of the original 4-by-8 rectangle and the scaled-up 10-by-20 rectangle, 
a student said that the rectangle was 2 1/2 times larger. The teacher was pushing 
for an explanation of what that meant. What was 2 1/2 times larger? In the follow-
ing excerpt, the teacher pushes students to realize that the generalizations they 
established when working with whole-number scale factors are still valid when 
fractional scale factors are used.

Mrs. Dew:	 How much bigger is the [large] rectangle compared to the 
[small] one?

Bryan:	 It is 6.25 bigger.

Mrs. Dew:	 Why six and one-fourth?

Bryan:	 I did the 200 [area of larger scaled rectangle] divided by the 32 
[area of original rectangle], and I got 6.25.

Mrs. Dew:	 What does that have to do with the scale factor?

	 Another solution offered by a student focused on showing that one can 
physically place four 4-by-8 rectangles inside of the scaled-up 10-by-20 rectan-
gle. Although the division and physical placement approaches are mathemati-
cally reasonable, concern arises that students are not connecting this situation 
involving a fractional scale factor to their previous work with whole-number 
scale factors. 

Mrs. Dew:	 So the scale factor will not help me figure out how the area 
changed?

Ali:	 If you divide 200 by 32, you get the 6.25, and if you times it by 
6.25, that would be what you would get, so that would be your 
scale factor.

Mrs. Dew:	 If I take the area of 200 and I divide by 32, which is where 
Bryan started us a few minutes ago, and when I say I get 6 and 
1/4, what does that mean?

Student A:	 You get 6.25.

Mrs. Dew: 	 What does that mean in terms of this picture?

Ali:	 That is how many times you multiplied the smaller one.

Student B:	 The area to get how many you need to make the bigger one.

Mrs. Dew:	 So 6 1/4 of these [small rectangles] makes this [larger  
rectangle]? 
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Class:	 Yes.

Students are still struggling to use their earlier generalization that change in area 
can be found by multiplying the original area by the squared scale factor. The 
teacher suggests that students look at the table developed in the previous task that 
used whole-number scale factors.

Mrs. Dew:	 Do I have to know the area of this [original rectangle] and the 
area of this [scaled rectangle] and divide them to find out how 
many of these fit inside of this? [pause]

Janine:	 For Problem 3.12, when you double it is 4, and when it is 3 it 
goes to 9, and 4 is 16. So the scale factor is 2.5. So wouldn’t you 
square 2 point 5 or times it by itself to see the area change?

Mrs. Dew:	 What is 2.5 times 2.5? 

Class:	 6.25.

Mrs. Dew: 	 So, Janine, is the same thing holding true?

Janine:	 Yes.

Mrs. Dew:	 Just because I went to something that wasn’t quite as nice and 
pretty as a 2, a 3, and a 4, the rule we have had for a week now 
didn’t go away. The way you prove that, like Bryan said, [divid-
ing 200 by 32] just helped me solidify that. Even with an ugly 
scale factor, I still have the same relationship. The scale factor 
times itself will tell me how that area will change.

Amy:	 So we spent almost a half an hour talking about that when we 
could have just done that?

Mrs. Dew:	 Yeah.

	 Situating fractions in the background of this similarity task helps extend stu-
dents’ understanding of fractions. For example, the mathematical concept that the 
area of a two-dimensional figure grows by a factor that is the square of the scale 
factor is an important idea that applies regardless of whether a whole number or 
fractional scale factor is used. The last student’s comment points to her realization 
that ideas carry from whole numbers to other forms of number, in this instance, 
fractions. Extending situations that could be and often are explored with whole 
numbers to include more complex numbers affords students the opportunity to 
see that the simplicity or complexity of the number or quantity is irrelevant. Stu-

2. “Problem 3.1” is a reference to the previous instructional task whose data were pre-
sented in the chart on the board. Problem 3.1 used whole-number scale factors.
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dents broaden their understanding of how fractions behave by experiencing them 
in the context of similarity.
	 Situating fractions in the background of a curriculum unit on similarity can 
also create a context for exploring reciprocal relationships and the inverse na-
ture of fraction operations. For example, applying a scale factor of 3 to a 2-by-3 
rectangle leads to a new rectangle that is 6 by 9. However, if one wants to scale a 
6-by-9 rectangle down to a 2-by-3 rectangle, the scale factor is not “three times 
smaller” or “divide by 3,” as was offered by this class of seventh graders. When 
students in this class offered the “divide by 3” response, the teacher replied, “If 
my scale factor has to be something that I multiply by, if you are saying that I 
am going to divide by 3, but I want to say my scale factor is what I multiply my 
side lengths by, what would I be multiplying by?” Pushing students to consider 
the resulting effect of applying a scale factor of 3 and a scale factor of 1/3 led 
to a conversation about the inverse nature of multiplication and division and the 
reciprocal nature of fractions.

Summary
	 Opportunities to use mathematical knowledge need to be included and high-
lighted in the development of instructional tasks and units. Doing so requires a 
lens that looks across grades and across content strands. It also calls for careful 
placement of mathematical skills and concepts in the foreground and background 
of tasks in instructional units in which a topic such as fractions is not the explicit 
topic of study.
	 A review of content previously studied is important. However, the amount 
of review students need is greatly diminished when a curriculum includes situ-
ations in which students repeatedly use prior knowledge in meaningful ways in 
increasingly complex settings. These examples present a view of curriculum in 
which one topic, skill, or concept is purposefully situated in the development of 
another. The examples noted here present mathematics as connected and inte-
grated, emerging through problem solving.
	 Often we assume that if a student has studied or “learned about” a topic, 
he or she is able to use that knowledge in subsequent problems. The instruc-
tional tasks presented in this article highlight the need to support the “use” of 
mathematical knowledge. These students did not struggle with the concepts they 
learned when studying fractions directly. The conversations did not focus on how 
to multiply fractions or how to find equivalent fractions. Rather, the focus was on 
using fraction concepts and skills in new settings. Initially, it was not always clear 
to students that they could use fractions in these new settings.
	 The examples presented here suggest that the acquisition of useable mathe-
matical knowledge needs to be purposefully developed. Like NCTM’s Curriculum  
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Focal Points (2006) or Principles and Standards for School Mathematics (2000), 
these examples offer support for an integrated curriculum in which mathematical 
concepts and skills are developed across the grades rather than repeated from 
year to year. By purposefully situating mathematical ideas in the foreground and 
background of instructional tasks, the teacher can focus instruction on a smaller 
number of main ideas and at the same time concentrate on developing a deep 
understanding of mathematics.
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Lessons Learned on the Job
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Mathematics, in addition to being a scientific discipline in its own right, is a 
basic tool in many professions. Engineers, physicists, carpenters, financial 

advisors, computer scientists, and a host of other professionals all use math-
ematics, each in profession-specific ways. Late in the last century, education re-
searchers began talking about the profession-specific uses of mathematics made 
by mathematics teachers. “Pedagogical content knowledge” (Schulman 1987), 
“mathematical knowledge for teaching” (Ball, Hill, and Bass 2005; Cuoco 2001), 
and other constructs became objects of research and subjects of papers on teacher 
education and professional development. These constructs describe many of the 
ways that teachers use mathematics in and out of their classrooms. The topic 
of this paper is connected to one such use: the mathematics that teachers use 
behind the scenes in their lessons. Making curriculum choices, creating tasks for 
students, and gauging the appropriateness of problems and activities for students 
are central components of effective teaching.
	 High school teachers make curricular decisions every day. Some of these 
decisions are small and localized: creating a problem set or a quiz, sequencing 
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examples and activities for a class, or trying out an example before class to get a 
feel for how it might go. Others are quite large: developing a syllabus for a new 
course, an end-of-year assessment, or a cross-disciplinary unit. These decisions 
call for profession-specific applications of mathematics.
	 The development of a published mathematics curriculum involves similar 
applications of mathematics. At the precollege level, curriculum development 
is often carried out by teams that include teachers, mathematics educators, and 
mathematicians, and each of these groups brings its own knowledge of mathe
matics to the task of producing textbooks that work in modern classrooms and 
that help students come to understand core ideas in mathematics. Over the 
past decade, we have been working on such a team, creating the CME Proj-
ect, a four-year, National Science Foundation–funded high school curriculum  
(Education Development Center 2009). We have come to see that, in addition to 
the mathematics that people bring to the job of curriculum development from 
their mathematical professions, a body of mathematical applications exists that 
is specific to, and useful in, the profession of curriculum development itself—a 
body of mathematics that is not the primary focus of teaching or research in 
either mathematics or education. 
	 The purpose of this article is to describe some of these applications. 
Through a series of examples, we describe some mathematical ideas and results 
that, if not completely new to us, led to new and interesting applications in our 
work on the CME Project and in our efforts to create curricula for professional 
development and teacher preparation programs. Our examples fall into four  
categories—

•	 organizing content around big-picture ideas, 

•	 finding surprising depth in seemingly simple mathematics problems, 

•	 reaching into classical mathematics to design tasks, and

•	 making use of available technological tools to support students’  
learning. 

	 This list is in no way exhaustive; our uses of mathematics in the process of 
curriculum design are as extensive as in any mathematics-related field. Our goal 
here is to give a few examples that will open a discussion among curriculum 
developers (at any scale) around this kind of applied mathematics.

Organizing Content around  
Big-Picture Ideas
	 Every mathematics curriculum puts forth a stance about what mathematics 
the authors think is important. So the first use of mathematics that curriculum 
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developers need is a big enough picture of mathematics itself to form such a 
stance. But a deep understanding of a mathematical area is clearly not sufficient 
if one wants to convey the central ideas of that area to beginning students. 
	 For example, working though a proof of the central limit theorem or the 
fundamental theorem of algebra would be out of reach for most high school stu-
dents. Still, we want students to have an understanding of what these theorems 
say, and, if possible, to get a glimpse, perhaps through concrete and transparent 
examples, of the mathematics needed to prove them.
	 Infusing different “big picture stances” into high school curricula is one of 
the reasons for the variations we see in innovative curriculum materials. Over 
the past two decades, we have seen curricula that center on modeling, statistics, 
discrete mathematics, data analysis, and other organizing principles. In such 
programs we see an underlying philosophy about what constitutes important 
mathematics for target audiences of high school students and teachers. 
	 In the CME Project, the big picture centers on the style of work used by 
mathematicians—the mathematical habits of mind that are indigenous to vari-
ous branches of mathematics. One of the wonderful things about mathematics 
is that, although the topics studied at the frontiers of the discipline require years 
of background building to understand, the habits of mind used by researchers 
can be developed through activities that are tractable for high school students. 
The work of developing such activities is a good example of profession-specific 
mathematics for curriculum development: the task is to take a sophisticated 
mathematical idea and to find a context or setting that is both faithful to the 
idea and accessible to high school students. Two examples illustrate this kind of 
work, one that focuses on reasoning by continuity and the other, on transforming 
equations.
	 Reasoning by continuity is a habit of mind that is ubiquitous in mathe-
matical analysis. The knack for imagining continuously changing systems, for 
finding invariants and extreme cases in these systems, and for approximating 
solutions to problems involving real numbers is at the heart of analysis. These 
analytic skills are usually developed in calculus or precalculus courses. In the 
CME Project, we wanted to expose students to this kind of thinking much ear-
lier, without all the trappings of derivatives and limits. Some time and research 
were required to come up with a setting, and we eventually chose geometric 
optimization, a classical circle of ideas that is developed beautifully in Courant 
and Robbins’s classic text (1941) and that is made all the more accessible with 
dynamic geometry software. 
	 In the CME Project, students experiment with the problem of situating an 
airport that will serve three cities to minimize the building of new roads. They 
investigate and prove (except for one technical detail) the isoperimetric theorem 
that shows that a circle maximizes the area for fixed perimeter. They find a geo-
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metric solution to the classic problem of minimizing the trip from a point to a 
line and then back to another point on the same side of the line. All this is worthy 
of inclusion in a curriculum for no other reason than the fact that it is beautiful 
and classical mathematics, but we had a different and more important reason 
for including it: It provides a locus for developing mathematical habits that will 
serve students well in analysis, physics, and many other fields. 
	 Transforming expressions to reveal hidden meaning is an algebraic habit 
of mind that is so ingrained in algebraists’ style of work that many are not even 
conscious of it. In the CME Project, we try to help students find an expression 
that is equivalent to a given expression but that is better suited for the job at 
hand. For example, it might seem silly to express the right-hand side of 

f(x) = 4x2−12x − 4
as 

3(x − 1)(x − 2)+ 4(x − 1)(x − 5) − 3(x − 2)(x − 5).

But this second expression allows one to easily find f(x) if x is 1, 2, or 5. This 
idea is at the core of Lagrange interpolation. We decided to include Lagrange 
interpolation in the CME Project because, in addition to providing students with 
a general-purpose tool that allows them to find a minimal-degree polynomial 
that agrees with any table of data, it helps students develop the habit of rewriting 
expressions for specific purposes. Several of the authors of the program were 
adamant that we develop Lagrange interpolation in a way that parallels the clas-
sic derivation of the Chinese remainder theorem, so that students could make the 
connection between the following two problems: 

•	 I am thinking of a number. The remainder when I divide it by 3 is 1. 
The remainder when I divide it by 5 is also 1. The remainder when I 
divide it by 11 is 4. What could my number be? 

•	 I am thinking of a polynomial. The remainder when I divide it by  
x − 1 is −12. The remainder when I divide it by x − 2 is also −12. The 
remainder when I divide it by x − 7 is 108. What could my polynomial 
be? 

	 One of our goals in the CME Project, and certainly one of the goals for 
most curriculum development teams, is to situate school mathematics in the 
larger landscape of mathematics as a scientific discipline. The fact that we have 
so many strikingly different high school curriculum programs in this coun-
try attests to the fact that this discipline can be perceived in many different 
ways. All these ways require applications of mathematics specific to curriculum  
development. 
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Finding Surprising Depth in Seemingly 
Simple Mathematics Problems
 Sometimes curriculum developers and teachers pose an interesting and seem-
ingly simple problem for students only to realize that it can be mined for some 
deep mathematics. Uncovering the deep mathematics often leads to a refinement 
of the problem and to further ideas for student investigations. 
 Here is a problem similar to one in the CME Project second-year algebra 
course:

There are six numbers in set D: {54, 11, 24, 53, 98, 30}.

1. Change one of the numbers in set D to make a new set with a smaller 
standard deviation.

 2. Change one of the numbers in set D to make a new set with a larger 
standard deviation.

3. Change one of the numbers in set D to make a new set with the same 
standard deviation.

Before reading further, you might take a moment to think about how to solve all 
three parts. 
 Our goal in this problem, and throughout the CME Project, was to integrate 
statistics into the rest of the program, with special emphasis on how algebra and 
statistics can work hand in hand: students with a strong understanding of algebra 
can more easily understand some diffi cult topics in statistics, and vice versa. 
In this instance, we wanted students to see the effects on statistical measures 
brought about by transforming data sets in some regular way. 
 When we worked out the solutions, we realized that part 3 seemed (to us, 
anyway) much more diffi cult than the first two, and the solution involved an 
application—new to us—of some very nice algebra. Here is how one of us solved 
part 3: 
 For any finite set of numbers, let  x be the sum of the elements of the set, x  
the mean of the elements of the set, and σ the standard deviation of the set, so 
that σ2 is the variance for the set. To solve part 3, we used the following identity, 
which we prove in Algebra 2: 

Let’s see if we can replace the element 30 by something that maintains the stan-
dard deviation. Replace 30 by a and recalculate σ2: 
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The new variance should equal the old, so we have an equation involving a: 
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where σ2 is the variance of the original set D. The only thing needed is that σ2 is 
constant; we do not actually need to figure out what it is. 
	 Equation (*) simplifies to 

5a2 − 480a + K = 0 (∗∗)

for some constant K. This is the equation that must be satisfied by any a that 
makes the variance of {54, 11, 24, 53, 98, a} equal 30. One such number is 30, so 
30 is a root of (∗∗). And the sum of the roots of this equation is 96. So the other 
root is 66. The variance (and hence the standard deviation) of {54, 11, 24, 53, 98, 
66} is the same as that of the original set D.
	 After working out a few more examples, we saw that if we replace any ele-
ment n of D by 
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Theorem: If a set of numbers has t elements, replacing one element m by

2
1

x m
t

m∑( )–
–

–

preserves the standard deviation.

x a

a

x a a

x

2 2

2

2

16926 900

16026

270 30 240

( ) = − +

= +

= − + = +

=

∑

∑
116026

6
240

6
240

36

2

2
2 2

+

= +



 =

+( )

a

x a a



Mathematics Applied to Curriculum Development� 187  

We found this result very satisfying and a nice application of the algebraic result 
that relates the roots of a quadratic equation to the equation’s coefficients. It also 
implies that, for any data set D, there is at most one replacement for each element 
that preserves the standard deviation. We say “at most one” because equation 
(∗∗) above may have a double root. We wonder (and have not worked out the 
answer) what conditions on the data would cause this to happen.
	 From a curriculum-development point of view, the result is useful for anoth-
er reason: Notice that the roots of equation (∗∗) above are both integers. It could 
have happened that the root we wanted turned out to be a nonintegral rational 
number, but we used the theorem to construct our data in a way that ensured that 
this did not happen.
	 This is one of the most central applications of mathematics to curriculum 
development: the use of mathematics in the design of problems, assessments, and 
more general investigations.

Reaching into Classical Mathematics  
to Design Tasks
	 When designing an activity, we often want the launch problems to “come out 
nicely,” which often means finding that numerical examples for the solutions are 
integers when they could be nonintegral fractions. Or the solutions are rational 
when they could be irrational. Messy numbers have their place, but we want 
students’ first experience with an idea to be uncluttered and to provide some im-
mediate feedback. The design of such activities often involves mathematics from 
outside the actual curriculum under development—classical mathematics that 
is behind the scenes of the curriculum, used by the authors to orchestrate what 
students see. 
	 Here are some examples, from the CME Project and our professional devel-
opment curricula, for readers to try; each contains a pleasant surprise: 

•	 The distance formula. Find the length of the sides of this triangle: 
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•	 The law of cosines. Find the measure of ∠Q: 

•	 Heron’s formula. Find the area of nABC: 

•	 Polynomial calculus. Find the extrema and inflection point for the 
graph of y = 140 – 144x + 3x2 + x3:
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•	 Optimization. Squares are cut out of the corners of a 7 × 15 rectangle, 
and the sides are folded up to make a box. Find the size of the cutout 
that maximizes the volume of the box.

Making up problems like these is the object of a great deal of teacher-room col-
laboration, and it is an especially relevant skill for curriculum developers. We 
call these problems “metaproblems”—mathematical problems that spring from 
making up mathematics problems for students.
	 One of the oldest metaproblems has to be the generation of Pythagorean 
triples. Such triples can be found in many ways; one way that we include as a 
problem sequence in the CME Project is to find points with rational coordinates 
on the unit circle—that is, on the graph of x2

 
+ y2  = 1 (see Cuoco [2008] for more 

details). For example, (3/5, 4/5) is such a point, and it produces the famous (3, 4, 
5) triple.
	 A generalization of this technique—finding rational points on conics—can 
be used to solve many other metaproblems. For example, consider the problem 
of finding integer-sided triangles with a 60 degree angle (like the 5-8-7 triangle 
discussed previously). We want integers a, b, and c so that the triangle with sides 
a, b, c has a 60 degree angle: 
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When we call c the “hypotenuse” of the triangle, the law of cosines tells us that 

c2 = a2 + b2 – 2abcosC
    = a2 + b2 – 2ab(1/2)
    = a2 – ab + b2.

So we are looking for triples (a, b, c)—we call them “Eisenstein triples” after 
Gauss’s student George Eisenstein—so that 

a2 – ab – b2 = c2   (***).

Dividing both sides by c2, equation (∗∗∗) above can be written as 
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so that (a/c, b/c) is a point with rational coordinates on the graph of x2 − xy + y2  = 1.  
Conversely, any point with rational coordinates on the graph of this equation 
produces an Eisenstein triple—put the coordinates over a common denominator; 
the two numerators and the common denominator will form a triple. 
	 In the CME Project, students show that the graph of −x2 − xy + y2 = 1 is an 
ellipse with major axis at a 45 degree angle to the coordinate axes: 

	 There are four rational points on this graph that produce “trivial” Eisenstein 
triples: 

(1, 0), (0, 1), (−1, 0), (0, −1).

If we pick one of these points, say, (0, −1) and draw a line through it with rational 
slope greater than 1, say, 3/2, we get a second intersection point, one that lies in 
the first quadrant: 
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	 By solving the system 

x xy y

y x

2 2 1
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,

we find that the second intersection point is (8/7, 5/7). And (8, 5, 7) is an Eisen-
stein triple—this is the triple we used to generate the law of cosines example 
earlier: 

82 – (8 × 5) + 52 = 72.

It is a nice exercise to show that if a line with rational slope contains (0, −1) and 
intersects the ellipse in two points, the second point will have rational coordi-
nates. So we have a method, which some call the “method of sweeping lines,” for 
generating Eisenstein triples: 

	 Theorem: If t > 1 is a rational number, then the graph of y = tx – 1 
intersects the graph x2 – xy + y2 = 1 in a rational point (a/c, b/c) in the 
first quadrant, and (a, b, c) is an Eisenstein triple.

	 The ability to generate Pythagorean and Eisenstein triples turns out to be the 
key to solving a host of task-design problems, including all the ones we listed at 
the start of this section. And the method of sweeping lines gives the curriculum 
developer a general-purpose tool for creating problems that allow students to get 
used to ideas without the computational overhead of messy numbers. 
	 Also available is an algebraic general-purpose tool, one that uses complex 
numbers, for generating Pythagorean, Eisenstein, and more general triples. De-
tails are in Cuoco (2000). 
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x2 – x • y + y2 = 1
y =      • x – 13
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Making Use of Available Technological 
Tools to Support Students’ Learning
	 The use of technology in a curriculum opens new ways to develop topics, 
but it can also steer the curriculum toward particular approaches to topics, simply 
because of the constraints of the software.
	 One example is the approach that many curricula now use to help precalculus 
students understand tangent lines to curves without the machinery of calculus. 
Graphing calculators make it possible to introduce the idea of “local linearity” in 
precalculus. For example, if one looks at the graph of y = x3 − x + 1 and repeat-
edly zooms in near (1, 1), the graph begins to look like a line, and the slope of the 
line is a good approximation to the slope of the curve at (1, 1). 
	 This technique is effective, and we use it in later chapters of the CME Proj-
ect, but it contains implicit appeal to some rather subtle and delicate mathemat-
ics. An older approach to facilitating the idea of tangents to curves involves less 
subtlety and builds on what students know about tangents from geometry. Going 
back to the graph of y = x3 − x + 1, imagine a secant to the curve that contains  
A = (1, 1) and intersects the curve at a second point B:

	 For centuries, teachers have asked students to imagine what happens as B 
gets closer to A, so that the secant approaches the tangent. Until now, widely 
available technology handicapped this approach. One could set up an experiment 
in dynamic geometry software that showed the secant approaching the tangent, 
but the secant disappeared when B coincided with A, as did the equation of the 
line through A and B. 
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 The new TI-Nspire handheld devices eliminate this problem, and they allow 
us (and hence teachers and students) to develop activities that bring this time-
honored thought experiment to life. 

 In addition, there is a computer algebra system (CAS) available as part of 
the TI-Nspire software that communicates with the geometry and graphing envi-
ronment. This system lets us connect the secant-to-tangent process with the un-
derlying algebra, a connection that uses some classical topics from second-year 
algebra and that was new to us. 
 Using the same example as above, let f(x) = x3 − x + 1, and suppose that f(x)
is divided by (x − 1)(x − 2). Standard results from second-year algebra  tell us that 
the remainder r(x) will be linear and that a polynomial q(x) exists such that 

f(x) = (x −1)(x − 2)q(x) + r(x).

We can get the remainder from a CAS: 

So r(x) = 6x – 5. Hence 

x3 − x + 1 = (x − 1)(x − 2)q(x) + 6x – 5. 

↑       ↑
f(x)        r(x)
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 By replacing x by 1 or 2, we see that r(x) agrees with f(x) at 1 and 2. In other 
words, 

y = r(x) = 6x – 5

is the equation of the secant to the graph of y = f(x) between x = 1 (point A) and 
x = 2 (point B).
 Now let B slide along the graph toward A. As the x-coordinate, say, a, of B 
approaches 1, we can divide f(x) by (x – 1)(x – a), and the remainder each time 
will define the linear function whose graph is the secant that is approaching the 
tangent: 

Passing to the limit, the linear function whose graph is the tangent to the curve at 
x = 1 is given by the remainder when x3 − x + 1 is divided by (x − 1)2:

Hence the equation of the tangent to the graph of y = f (x) at x = 1 is y = 2x − 1.
 This became the essence of the development we use for the analysis of poly-
nomial and rational functions in the CME Project. The essential mathematics is 
summarized in the following theorem: 
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Theorem:

•	 If a polynomial f(x) is divided by (x – a)(x – b) and leaves a remainder 
of r(x), then y = r(x) is the equation of the secant of the graph of y = 
f(x) between x = a and x = b.

•	 If a polynomial f(x) is divided by (x – a)2 and leaves a remainder of 
r(x), then y = r(x) is the equation of the tangent of the graph of y = f(x) 
at x = a.

	 We have shown this result to many users of mathematics, and, although most 
see the proof almost immediately, few have seen the result beforehand. But it 
became the organizer for the treatment of the analysis of polynomial and ratio-
nal functions in the CME Project, allowing us to expose precalculus students to 
special cases of central ideas in calculus, and showing how a CAS bundled with 
geometry software can be used to integrate algebra and geometry. In later courses 
in calculus, students can make the connection between the remainder when f(x) 
is divided by (x − 2)2 and the first two terms in the Taylor expansion for f around 
x = 2.

Conclusion
	 Many more examples like this abound. We used mathematics in specialized 
ways when we developed activities around the tables of arithmetic, the geometry 
of regression lines, the factorization of polynomials, and the development of area 
formulas. In most instances, we started from some mathematical and pedagogical 
experiences, drafted an activity, got “hooked” on a problem that we wrote for stu-
dents, pushed the problem further for our own curiosity, developed some general 
results that pertained to the problem, and then applied those results to refine the 
curriculum materials. This process was iterated repeatedly in the development of 
the CME Project. 
	 Having lived with this process over the past decade, we are convinced of the 
existence of a body of mathematics that is applied by curriculum developers to 
the work of writing for students and teachers. Like all applied mathematics, this 
body is connected in essential ways to mathematics as a scientific discipline, and, 
like all applied mathematics, it has its own flavor, its own collection of problems 
and results, and its own web of habits of mind.
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Researchers have long agreed that textbooks have a strong effect on the 
content that students learn in mathematics classrooms (Begle 1979; Porter 

1989; Schmidt, Houang, and Cogan 2002). These materials also affect how teach­
ers teach (Ball and Cohen 1996; Reys, Reys, and Chávez 2004). Yet remarkably 
little is known about how textbook selections in mathematics are made in districts 
across the country. Who makes these decisions? What role do teachers play in 
the decision making? What criteria are used for selection? What influences those 
decisions?
	 This article reports on a study investigating mathematics textbook selec­
tion.1 To understand the complexities and realities of how districts select cur­
riculum materials, interviews were conducted with more than 150 K–12 mathe­
matics curriculum decision makers from districts in eight states. The states—
Colorado, Louisiana, Maine, New York, Ohio, Texas, Washington, and West 
Virginia—represent a mix of state-adoption and open-territory states across 
the country. Twenty-one states in the United States are “state-adoption” states, 

1. The authors are grateful for the National Science Foundation’s support of the project 
(Grant No. ESI-0454022). The opinions expressed are those of the authors and not neces­
sarily those of the Foundation.
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which means that the state provides a list of approved textbooks and establishes a 
timeline for adoption. The remaining twenty-nine are “open-territory” states; the 
choice of textbooks is unrestricted by the state, and decisions about funding and 
timing of adoptions are made locally, at the district or school level. The districts 
selected for interviews in each state reflect a range of characteristics in students’ 
performance level, the percent of students in poverty, geographic region, school 
and district size, and textbooks currently used.
	 The curriculum leaders interviewed were typically curriculum coordinators, 
department chairs, mathematics supervisors, and assistant superintendents. The 
interviewers sought to understand curriculum-related decision-making processes 
in various settings, to identify the decisions curriculum leaders make, and to 
identify the role different sources of information play in those decisions. We 
were particularly interested in curriculum leaders’ use of research, in light of na­
tional calls for a broader perspective on the research needed to properly evaluate 
mathematics textbooks (National Research Council [NRC] 2004). We sought to 
answer the following questions: 

•	 What processes do school districts use in selecting mathematics  
textbooks? 

•	 What factors shape those decisions?

•	 How does textbook selection differ in state-adoption and open-territory 
states?

•	 What research do curriculum leaders find most useful in textbook  
selection? 

•	 What questions about mathematics textbooks do decision makers need 
answered?

	 An analysis of our interview data has been supplemented by other sources, 
including a survey of the members of the Association of State Supervisors of 
Mathematics, a series of surveys of curriculum leaders nationally conducted by 
our collaborators at Inverness Research Associates, an investigation of state-level 
documents and Web sites, and a review of the relevant literature. Subsequently, 
we discuss our findings in three primary areas—(1) textbook selection in an era 
of accountability, (2) factors that influence mathematics textbook selection, and 
(3) typical district selection processes.

Textbook Selection in an Era of 
Accountability
	 The selection of mathematics textbooks offers challenges different from 
those in other disciplines; mathematics teaching at all grades has traditionally 
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relied heavily on the use of textbooks. Choosing good mathematics textbooks is 
crucial in times of increased accountability. The No Child Left Behind legislation 
demands greater accountability for students’ learning and calls for research-based 
evidence to support the choice of mathematics textbooks. Most states released 
new state standards in the early 2000s, many of which were substantially differ­
ent from past documents and offered greater detail, including grade-level expec­
tations (Reys 2006). With measured outcomes for students in grades 3–10—and 
consequences for underperformance—aligning mathematics programs with state 
standards is an increasing concern for districts.
	 An important finding of our study was that these pressures have resulted in 
districts’ moving toward more centralized decision making about mathematics 
textbooks. This was most evident in districts that historically allowed schools (or 
even teachers) to choose mathematics textbooks independently, because these 
districts now require common materials be used across all schools. The phenom­
enon was also evident in districts that have always made a centralized decision 
but have, in the past, allowed teachers to make individual choices about the ex­
tent to which they use the selected textbooks. Those districts report introduc­
ing mechanisms that hold teachers accountable for using the materials, such as 
pacing guides and curriculum maps, and common unit and yearly assessments. 
Roberta Ashton2, an assistant superintendent from a large district in an open-
territory state, talks about her district’s move to centralized decision making:

We have been a district in “academic difficulty” since the designation was 
created. And part of the reason that we were there was because schools made 
those decisions locally. Every school had a different reading program. Every 
school had a different math program. There was no accountability…. Since the 
district was being accountable for our rating, we needed to be accountable for 
the programs we were to implement. And so we changed that at the district. 
Five years ago we said that we would decide on the core programs in read­
ing, math, science, and social studies, what those materials would be. And we 
would be able to, then, better support the professional development that went 
along with that. And then we could do our own in-house assessments to see 
how well students were doing, and then we could make schools accountable 
for the implementation.

Curriculum leaders across our study reported using the textbook-selection pro­
cess as an opportunity to create greater consistency in their districts’ mathematics 
programs. A common textbook selection ensures that teachers across a district 
are using materials closely aligned with state standards and test requirements 
and enables a district to provide professional development linked closely to those 
materials.

2. The names of all individuals and school districts have been changed.
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Factors That Influence Mathematics 
Textbook Selection
	 Discussions of the factors affecting textbook selection often focus on such 
criteria as the content and components of the books. In our interviews, curricu­
lum leaders noted these factors but also reported a broader range of influences on 
their textbook choices. We identified five factors that appeared to most influence 
the choice of textbooks: the degree of alignment between the textbook and state 
standards, committee review of textbook quality, additional sources of data gath­
ered by a curriculum leader or committee, teachers’ acceptance of the textbooks 
under consideration, and advocacy by the curriculum leader.

Alignment with State Standards 
	 Across all eight states in our study, curriculum leaders highlighted the im­
portance of choosing textbooks that aligned with state standards and were con­
sistent with state tests. Mary Wagner, a mathematics curriculum leader in a state-
adoption state, described this pressure: “We have a high-stakes math test. We’ve 
got to be sure that the students learn those skills first. Because we’re accountable 
to kids who don’t graduate from high school as juniors if they don’t pass those 
tests.” After receiving sample textbooks, the first thing Mary’s selection commit­
tee does is look closely at the state mathematics standards and trace them through 
the books to see how each is addressed.
	 District leaders in both open-territory and state-adoption states discussed 
doing this sort of “alignment check” as part of evaluating materials. This check 
ranged from a cursory look—Does this textbook align with the general direc­
tion of our state standards?—to a much more detailed analysis. In state-adoption 
states, some districts relied solely on the state’s approval of materials as evidence 
of alignment; other districts did their own analysis to look at depth of coverage of 
a particular topic (e.g., functions) or to examine a concept that was particularly 
weak for their students (e.g., the division of fractions).

Committee Review of Textbook Quality 
	 An important factor in the choice of textbooks was the outcome of a commit­
tee’s review of the quality of the materials. This committee evaluation is typically 
guided by the use of an established set of criteria or a rubric. These rubrics reflect 
the district’s beliefs about mathematics teaching and learning. They keep the pro­
cess focused on important features of the books and promote a more objective 
and consistent process. For the districts in our study, alignment to standards was 
the primary criterion reflected on rubrics. Other crucial factors were the quality 
of mathematical content, the pedagogical approach, and the organization of the 
materials.
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	 Reviewing or establishing criteria was an important part of many districts’ 
preparation for the selection process. For example, one curriculum leader de­
scribed the development of criteria as a crucial step early in the process: “I fa­
cilitated them through a process to actually derive or develop or create their own 
definition of standards-based mathematics and how it applied to instructional 
materials. And that was tough … specifically, what is it we were getting at? What 
really defined standards-based programs? And that became a key for us to use, 
as an operational definition. Then it becomes useful: does the definition apply to 
this set of materials?”

Additional Sources of Data
	 Districts in our study also considered information that went beyond the 
committee’s review of the materials at hand. Curriculum leaders and commit­
tee members turn to relevant literature, to knowledgeable and trusted sources 
of information, to results from piloting, and to advice from similar districts in 
making their selections. The data gathered from those sources were a significant 
influence on the choice of textbooks in more than half our interviews.

Relevant literature
	 Articles and books about mathematics teaching and learning, such as 
Adding It Up: Helping Children Learn Mathematics (NRC 2001) or Beyond 
Arithmetic: Changing Mathematics in the Elementary Classroom (Mokros, 
Russell, and Economopoulos 1995), were commonly used to orient commit­
tee members to best practices and were influential in guiding the development 
of criteria for selection. 

Knowledgeable and trusted sources
	 In investigating their textbook options, curriculum leaders and committee 
members were likely to go to trusted sources who were considered knowledge­
able to identify “top” mathematics textbooks. These sources included regional 
and national organizations, state departments of education, and professional net­
works. Expert reviews, such as the American Association for the Advancement 
of Science’s (2000) Project 2061 textbook evaluations or analyses of textbook 
alignment to state standards, were used to identify short lists of high-quality 
mathematics textbooks.

Advice from similar districts
	 Data from colleagues in other districts were particularly influential in the 
open-territory states in our study; we believe this is because districts adopt on 
their own schedules (rather than simultaneously, as they do in state-adoption 
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states). This allows curriculum leaders to make connections to districts that have 
previously adopted textbooks they are considering. Curriculum leaders contacted 
other districts to learn which programs they should be seriously considering, or­
ganized site visits to see particular textbooks in use, and solicited other users’ 
advice on implementation. Interviewees emphasized the importance of consult­
ing with “districts like us”—districts demographically similar or geographically 
near them—so credible comparisons could be made.

Results from piloting
	 A minority of districts in our study piloted materials, but for those that did, 
the results of those pilots were influential in selection. Piloting provided valuable 
data about teachers’ experience using particular textbooks and fostered insight 
about the support needed for successful implementation.

Teachers’ Acceptance
	 For curriculum leaders in our study, teachers’ acceptance of the selected 
textbook was crucial and viewed as essential to effective implementation. As 
one leader put it, “[N]o matter how good the curriculum is, if people don’t have 
ownership … they’re not going to utilize it to the fullest extent.” Concerns about 
teachers’ buy-in and fidelity of use prompted leaders to design selection pro­
cesses to include teachers’ input through representative committees or a teachers’ 
vote. In some instances, teachers’ participation was required by district or board 
policies. Attention to teachers’ experience using the materials was also reflected 
through the inclusion of “ease of use” elements among the criteria for evaluation, 
such as whether the materials were teacher-friendly or had additional assessment 
resources and other desirable ancillaries.
	 Teachers’ comfort with the choices being considered was particularly an is­
sue if any of the options represented a significant change in practice—for ex­
ample, the NSF-funded curricula were seen by interviewees as requiring a shift 
in pedagogical approach for many teachers. Many curriculum leaders in our 
study expressed reluctance to choose textbooks that required significant change 
in instructional practices, fearing that implementation would suffer from lack of 
teachers’ support. This consideration sometimes meant that curriculum leaders 
ultimately accepted a textbook choice that was less satisfying for their program­
matic needs in exchange for a perceived higher degree of teachers’ commitment 
and use. As one curriculum leader described the phenomenon, “There are times 
where our needs, and the programs that support them, are just too radical and 
it’s just too much change. And so, when folks have a voice [in the process], they 
can resist the radical change through that voice. And sometimes, that’s probably 
saved us. And other times, it’s actually hindered.”
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Advocacy by the Curriculum Leader
	 Curriculum leaders in our study took a range of approaches in how much 
they revealed their own perspective on the choice of textbooks and whether they 
influenced a committee to adopt a particular program or approach. Those who 
took an advocacy approach had a significant influence on the ultimate choice of 
textbook in two ways—either as an advocate for particular selection criteria or 
as an advocate for a particular textbook or class of materials (such as the NSF-
funded curricula). One curriculum leader described this advocacy role: 

When we’ve made the [program A] selection this current time, it wasn’t be­
cause anybody here was pushing for [program A]. What we clearly understood 
from our student data is that, kids were not math literate. They had no contex­
tual understanding. To put it a different way, they were very algorithms-based, 
and that’s the way we were approaching the math. And we believe that had a 
significant impact on the learning…. We need a program … that focuses on 
mathematical thinking…. That was … nonnegotiable during the selection  
process.

These curriculum leaders saw textbook selection as an opportunity to stimulate 
improvements to their mathematics program and viewed the choice of textbook 
as pivotal to supporting those improvements.
	 Although the factors described here were influential in the choice of ma­
terials, they also affected the ways in which curriculum leaders designed their 
districts’ selection processes. In the next section, we describe findings about the 
nature of those processes. 

District Selection Processes
	 We asked curriculum leaders to describe in detail the processes used in 
choosing mathematics textbooks in their districts, as well as the influences on the 
design of those processes. We found a set of common elements across state and 
district contexts. In most districts in our study, a selection committee or similar 
body had responsibility for the textbook-selection process. In a typical district, 
that committee would—

•	 prepare for the selection process by reviewing district and state re­
quirements, goals for the process, relevant district data, and recom­
mendations from the field;

•	 narrow the options by creating a “short list” of textbooks for  
evaluation; 

•	 evaluate those options in detail by using established criteria, reading 
relevant reviews, visiting schools using the textbooks, and/or piloting 
the materials;
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•	 decide on a recommendation by consensus or by official vote; this rec­
ommendation almost always requires school board approval.

What varied across districts was the locus of decision making: in some districts, 
teachers were the primary decision makers; in others, the curriculum leader had 
the responsibility. Four models or approaches to curriculum selection emerged: 
committee-guided, teacher-driven, administrator-led, and informal. In the follow­
ing we describe each in detail. 

A Committee-Guided Approach
	 This was the predominant model identified in our study. In this model, a 
committee composed largely of teachers serves as the primary decision-making 
body in the textbook selection process. That committee works closely with a 
curriculum leader to choose new mathematics materials. Such leaders play a pri­
mary role in the committee-guided approach, designing and focusing the selec­
tion process. 
	 Franklin Public Schools, a suburban district of 4,000 students in an open-
territory state, follows a committee-guided model. Cheryl Hable, the curriculum 
director in Franklin, works closely with a teacher committee to select textbooks. 
They begin by establishing a list of textbooks to examine. “When I meet with 
our teachers, some of them will know programs they want to look at. I’ll present 
programs that I would like them to look at. Everybody gets to look at everything, 
and then we’ll narrow it down to three.” They are guided in their analysis by 
district-created selection criteria. As Cheryl describes, “We’ll look at the align­
ment to the state standards. We’ll have the teachers visit classrooms where the 
programs are being used, so that teachers can talk to teachers. And we’ll have 
parents involved, looking at materials, so they feel they’ve had a voice.” Cheryl 
guides the committee in reaching consensus on a recommendation to their board 
for adoption. She believes she plays an important role in keeping the conversa­
tion focused on mathematics: “I remember the days when teachers would look 
at math books, and a sales rep would come in with goodies. But I’m now real 
conscious of watching how it’s done, so that we’re looking at the content.”

A Teacher-Driven Approach
	 Some curriculum leaders described an approach that aims to ensure that the 
process is fair, open, and transparent. This variation on the committee-guided ap­
proach protects teachers’ participation in the process: the curriculum leader takes 
a minimal and deliberately neutral role, and the choice of textbooks is left strictly 
to a committee of teachers. These districts add elements to the process that re­
duce potential biases: someone other than the responsible administrator may lead 
the committee, there may be an obligation to hold open and public meetings, 



How Do Districts Choose Mathematics Textbooks?� 207  

there may be a requirement to review all publishers’ submissions equally, and 
there may be procedures for certifying that the process was fair. This teacher-
driven approach occurred most frequently in our study in Louisiana and Texas, 
state-adoption states with strict guidelines for textbook selection.
	 Fairview City Schools, a large district in a state-adoption state, follows this 
approach. The process begins when mathematics supervisor Darlene Gray re­
ceives the state’s list of approved textbooks. She asks principals to recommend 
teachers to serve on the adoption committee. Once the committee is formed, she 
provides training focused on what to look for in a mathematics textbook. She 
works from the state-adopted list to order each text for the committee to review. 
The district offers a textbook “caravan,” in which publishers present their text­
books. The teachers then divide into grade-level groups to review the materials 
and discuss their relative merits. Those discussions are guided by a district-es­
tablished set of criteria. The teachers then cast a secret ballot. Darlene tallies the 
vote and forwards their recommendation to the school board. When asked about 
her preferences for the outcome, Darlene said, “I have no particular direction 
I am hoping things will go. I tell them, tell me what you want. They were ulti­
mately the decision makers. They had some debates within the group, but I stayed 
out of them.” She sees her role in the process as ensuring that the committees are 
composed of productive contributors and preparing them to begin the process.

An Administrator-Led Process
	 A minority of districts, almost all in open-territory states, reported moving 
from a committee-guided textbook selection to an administrator-led approach. In 
this model, the responsible administrator acts as the primary decision maker, and 
the emphasis is on selecting textbooks that will support needed improvements to 
the district’s mathematics program. The process may still include a committee of 
teachers, but their choices may be limited to only those options already approved 
or recommended by the curriculum leader. We found a range of such approaches, 
from districts in which the committee’s choice was restricted to a particular class 
of materials (e.g., NSF-funded curricula) to districts in which an administrator 
chooses a single textbook. In our data, this approach appeared more frequently in 
elementary school selection processes than in middle or high school.
	 Centerville, a suburban district in an open-territory state, used this approach 
in two recent mathematics textbook adoptions. Carolyn Spacey, the curriculum 
supervisor in Centerville, recommends one or two textbooks to a committee of 
teachers. She believes it is her role to research the options carefully and to inform 
and educate staff about that research. She wants to ensure that they “don’t buy 
something with a pretty cover and a fast-talking salesperson. My style is not the 
old style—where we bring in seven publishers and they each get twenty minutes 
to talk to the staff and then we vote. Now I work hours behind the scenes to 
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investigate options, reading what best practices in math are, what programs are 
successful, where students are achieving well.” In this model, the curriculum 
leader’s role is conducting research and contributing professional expertise about 
the mathematics program and what is needed to improve its quality.

An Informal Approach
	 Very small districts, or districts that allow schools to make their own text­
book choices, took a less-structured, informal approach in which the involved 
teachers—those teaching the affected grade level, or teaching a particular middle 
school or high school mathematics course—together reviewed materials and 
made a textbook selection. In these instances, no official committee was appoint­
ed, and in some cases, no specific criteria were established.
	 Springfield School District has one small high school, and takes an infor­
mal approach to choosing mathematics textbooks. High school teacher Tanya 
Moller reviews choices with her one colleague in the mathematics department, 
Sue Marsh, and together they decide on the books they will use in each course 
they teach. Says Tanya, “We kind of made our own criteria, what we liked about 
the books. We then came to each other with three books that we really liked. And 
then we’d kind of explain why. In the end, we both sort of nodded our heads, and 
we thought this one book was the way to go.” This model relies on teachers’ ex­
pertise in choosing materials that will work best for them and their students.

Goals across the Four Models
	 Across the approaches described in the foregoing, curriculum leaders are 
paying attention to the following three goals in designing the mathematics text­
book selection process.

•	 The first goal is to determine which materials are the best fit for their 
mathematics program. Districts pursue this goal by checking text­
books’ alignment with state standards, by establishing criteria for qual­
ity and analyzing textbooks accordingly, by reviewing student data to 
determine areas of need; and by looking for evidence—through pilot­
ing, research, or independent evaluation—of quality.

•	 The second goal is to build teachers’ commitment to using the new 
textbooks. Curriculum leaders argue that if materials are not appealing 
for teachers to use—or if teachers do not believe that they have input 
into the choice of materials—implementation will be less effective.

•	 The third goal is to ensure that the process is fair and transparent. Dis­
tricts protect against bias and corruption by seeking input from a range 
of stakeholders, considering multiple options, establishing criteria for 
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evaluating textbooks on their merit, and looking for independent data 
as evidence of quality.

Conclusion and Recommendations
	 The study reported here paints a portrait of district selection processes for 
grades K–12 mathematics textbooks—processes not previously well understood 
or described in the literature. We found that curriculum leaders were trying to 
answer several important questions about the textbooks under consideration:

•	 How do these mathematics textbooks align with state standards and 
tests?

•	 Do these textbooks support good mathematics teaching and learning?

•	 What textbooks are similar districts using, and how are their students 
performing?

•	 Are these mathematics textbooks a good fit for our students and  
teachers?

•	 What support will these textbooks need to be implemented well in our 
district?

•	 Can these materials be used as a lever for change?

Our study was primarily descriptive, but it suggests a few recommendations for 
improving mathematics textbook selection processes and the resources to sup­
port them.
	 Curriculum leaders need improved mechanisms for obtaining crucial infor-
mation about the quality and effectiveness of textbooks. The districts in our study 
turned to a variety of sources of information to identify and learn more about 
their options for mathematics textbooks. This process was time-consuming, and 
the information available was inadequate. In the instances where expert reviews 
were consulted, they were influential in decision making, yet few such reviews 
were available to districts. In open-territory states, districts had greater opportu­
nities to learn from similar districts about the actual use of textbooks they were 
considering; those opportunities were more limited for districts in state-adoption 
states. Districts need better resources for learning about the quality and effective­
ness of textbooks, in ways that are accessible and useful for district curriculum 
leaders.
	 Curriculum leaders should view the selection of textbooks as an opportunity 
to improve and bring greater coherence to their district’s mathematics program. 
Curriculum leaders reported using the adoption process to create greater consis­
tency and coherence in their district’s mathematics program. Adopting a common 
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set of materials and requiring its use across schools allowed districts in our study 
to ensure that mathematics teaching and learning was closely aligned with state 
standards and testing requirements. It also allowed those districts to design pro­
fessional development and assessments to be consistent with the textbook being 
used.
	 Curriculum leaders can design the textbook selection process to support 
attention to quality and effectiveness. The results of the study emphasize the 
important role that curriculum leaders played in designing the selection process 
itself. Curriculum leaders make a set of strategic choices in structuring and facili­
tating the selection process for mathematics textbooks. These choices include—

•	 how selection committees are prepared to participate in the process,

•	 what criteria are used for evaluating the quality of mathematics  
textbooks,

•	 what role teachers’ input plays in the process,

•	 whether the curriculum leader advocates a particular approach or  
program, 

•	 which sources of information are introduced in the process, 

•	 how newly selected textbooks are implemented and supported, and 

•	 how schools and teachers are held accountable for implementation.

These choices provide strategic opportunities for curriculum leaders to influence 
the decision-making process—and maximize the potential contribution that new 
textbooks can make in improving the mathematics program.
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Ms. rhodes reads the memo from her principal: “Would you consider chair-
ing the district’s mathematics textbook-adoption committee this year?” 

She sighs. She immediately recalls her previous experience with textbook adop-
tion and her frustration with the process. She remembers the contentious meet-
ings in which teachers adamantly debated which textbooks would be best for the 
students in the district. All the teachers had their own opinions about what was 
important in a textbook, yet none had evidence to support their claims. Questions 
begin to pour through Ms. Rhodes’s mind: What are the most important factors 
to consider when evaluating textbooks? Does research exist that might guide the 
committee’s decisions? Where can reliable information on specific curricula be 
found? How should the committee do its work?
	 As former classroom teachers and participants on textbook-adoption com-
mittees, we have experienced many of the same concerns as Ms. Rhodes. The 
introduction of new kinds of textbooks, such as those developed with support 

The authors would like to thank Diana Lambdin, Dick Caulfield, Andrea McCloskey, 
and the Yearbook Editorial Panel for their constructive comments on earlier drafts of this 
article.
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from the National Science Foundation (NSF), has changed the way that mathe
matics textbooks are designed and made the textbook-adoption process more 
complex. Prior to the introduction of these textbooks, much less diversity was 
found in the types of textbooks available for adoption committees to review. For 
example, previously, a typical publishing company would present a single alge-
bra 1 textbook for adoption. In today’s market, that same publisher may promote 
a variety of curriculum materials for algebra 1, including NSF-funded materials 
and those developed by the publishing company. Furthermore, at the secondary 
school level, the organization of textbook series as integrated or single-subject 
curricula has provided additional options to consider.
	 Many factors need to be considered when making textbook-adoption deci-
sions. Having had a wide range of classroom teaching experiences with different 
age levels and in diverse school settings, we understand the complexities involved 
in the textbook-adoption process. In preparation for this article, we reflected on 
our own experiences and reviewed textbook-adoption literature and research on 
curriculum materials, with the hope of guiding educational practitioners like Ms. 
Rhodes.

Considerations in Textbook Adoption
	 Mathematics textbooks are a strong determinant of what students have the 
opportunity to learn and what they do learn through the actions of the teacher. 
In fact, teachers often use the textbook as their primary resource to make daily 
mathematics instructional decisions (Weiss et al. 2001). Hence, the mathematics 
textbook often becomes the mathematics curriculum for many teachers. Because 
textbooks play a prominent role in students’ learning, making informed decisions 
is crucial when adopting textbooks. In this article, we review the following fac-
tors that are important to consider when adopting a mathematics textbook:

•	 Instructional Design

•	 Content Emphasis

•	 Support for Students’ Learning

•	 Support for Teachers’ Learning

•	 School and District Considerations

•	 Research on the Curricular Outcomes and Effectiveness

Instructional Design
Does the curriculum include cognitively demanding tasks that provide a balance 
of procedural knowledge and conceptual understanding?



Considerations in the Review and Adoption of Mathematics Textbooks� 215  

	 When analyzing the instructional design of a curriculum, a textbook adop-
tion committee should focus on how the content is presented across grades, look-
ing specifically at the learning trajectories that are established and the pedagogi-
cal strategies used. The goal of mathematics programs is for students to learn 
concepts, applications, efficient skill procedures, and problem solving. However, 
curriculum materials differ in their approach to introducing and developing im-
portant mathematical ideas.
	 High-quality textbook materials should reflect the latest research about how 
students learn mathematics. For the purpose of this article, we define high-qual-
ity textbooks as those that use cognitively demanding tasks in a student-centered 
environment that encourages learners to solve meaningful problems, build con-
ceptual understanding, and connect mathematical ideas (Stein et al. 2000). Addi-
tionally, high-quality textbooks encourage the practices advocated in Principles 
and Standards for School Mathematics (NCTM 2000). In these textbooks, defi-
nitions and procedural techniques related to a topic are typically addressed only 
after a mathematical concept has been explored and discussed by students (Stein, 
Remillard, and Smith 2007). They often include lessons that build on students’ 
prior knowledge of mathematics and offer opportunities for teachers to engage 
students in thoughtful discussions about challenging mathematical tasks. These 
curricula commonly offer students opportunities to justify and communicate 
their mathematical reasoning and explore multiple representations of important 
mathematical concepts.
	 Figure 15.1 shows an example of how conceptual understanding of the 
Pythagorean theorem might be developed before the standard formula is intro-
duced. In this problem, students are asked to make and test a conjecture on the 
basis of a pattern. Furthermore, this example affords students an opportunity to 
connect algebraic and geometric ideas. Like the example shown in figure 15.1, 
high-quality textbooks encourage students to conjecture and generalize from pat-
terns and draw connections between mathematical ideas.
	 Historically, commercially developed curriculum materials emphasized 
teacher-directed instruction as the basis for teaching and learning mathematics. 
In these types of textbooks, definitions and examples are provided in the ma-
terials, and students are expected to apply their knowledge of a mathematical 
concept after mastering procedural skills. Concepts and skills are often taught in 
a specific sequence established by the curriculum. We believe there should be a 
greater balance between conceptual understanding and procedural knowledge of 
mathematics.
	 In today’s textbook market, a wide spectrum of curricular choices exists that 
vary in instructional orientation. Some focus more on memorization and prac-
tice; others, on inquiry and exploration. Still others, including some publisher-



216� Mathematics Curriculum: Issues, Trends, and Future Directions

generated textbooks, have responded to the NCTM Standards by incorporating 
lessons that involve investigations, the use of manipulatives, cooperative learning 
groups, and adaptations for diverse learners.
	 We believe that many textbooks in today’s market are potentially useful as 
resources for classroom mathematics teachers. However, we also realize that 
some materials can be difficult to implement, may require considerable profes-
sional development, and might conflict with the beliefs or current practices of 

Fig. 15.1. An example of high-quality curriculum. (Source: Lappan et 
al. [2009]. © 2009 by Michigan State University. Published by Pearson 

Education, Inc. Used by permission. All rights reserved.)
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some teachers in the school or district. Thus, they may not be appropriate for 
adoption in every school.
	 Those reviewing curricula for adoption need to decide the types of knowl-
edge and skills that they expect their students to acquire, and use this decision 
as a lens for critiquing the instructional design of potential curricular materials. 
Reys, Reys, and Chávez (2004) believe that curricula “should present material 
coherently, develop ideas in depth, engage students and motivate learning” (p. 
65). Additionally, a curriculum should provide tasks that promote problem solv-
ing, high expectations of students, and equity in access. The type of activities 
suggested in the text should challenge students’ thinking rather than merely pro-
vide procedural practice. 

Content Emphasis
Are mathematical topics in the curriculum presented in sufficient depth and 
aligned with national, state, and district curriculum standards? 
	 The mathematical content of a textbook series is one of most important as-
pects to evaluate when considering new mathematics textbooks. A mathematics 
curriculum should “be coherent, focused on important mathematics, and well 
articulated across the grades” (NCTM 2000, p. 14). Additionally, it is important 
to consider the expected content needs of the school or district. State standards 
are often used to determine such content needs, but these needs can also be influ-
enced by teachers’ preferences, local curriculum frameworks, and publications of 
the National Council of Teachers of Mathematics (e.g., Principles and Standards 
for School Mathematics [2000] or Curriculum Focal Points for Prekindergarten 
through Grade 8 Mathematics [2006]). Many textbook companies provide tables 
or charts of how their curriculum aligns with individual state standards or the 
NCTM Standards. Textbook-adoption committees can choose to complete their 
own content analyses or to use reviews provided by an outside resource.
	 A number of studies have evaluated the content and instructional quality of 
current textbooks. For example, the American Association for the Advancement 
of Science (AAAS) (Project 2061 2000) and Mathematically Correct (Clopton 
et al. 1999) commissioned analyses of middle school mathematics textbooks. 
These two groups began with different viewpoints—AAAS supporting the vision 
outlined by NCTM and Mathematically Correct advocating a more traditional 
approach that focused on skill acquisition. The analysis of textbooks reported 
by each group differed because of the divergent values and orientations of each 
group. A review of both reports lends interesting insights and therefore can assist 
textbook-adoption committees in developing their own framework for reviewing 
textbook content.
	 The content analyses performed by AAAS and Mathematically Correct are 
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certainly more thorough than many school or district textbook-adoption commit-
tees can individually complete. Accordingly, what should local textbook-adoption 
committees consider when looking at the mathematical content of a textbook se-
ries? The two studies cited provide an important dichotomy to consider: breadth 
and depth of the content of the textbook series.
	 First, a textbook-adoption committee should compare the breadth of the 
textbook series’ content with its district or state curriculum standards. The com-
mittee should consider each standard and verify whether it is addressed at the 
appropriate grade level in the textbook series. Many curriculum materials are 
designed to develop content through a spiral treatment over several grades. In 
their analyses, AAAS reviewed several middle school mathematics series in 
their entirety (grades 6 through 8), whereas Mathematically Correct evaluators 
reviewed only grade 7 textbooks. Although Mathematically Correct attempted 
to consider a broad range of mathematical topics, it did not identify the con-
tent addressed across the entire series (grades 6–8). It is crucial to take time to 
determine whether content missing in a specific grade is addressed elsewhere 
in the textbook series. For example, a state may require that students be able to 
solve problems involving decimals and fractions in its seventh-grade academic 
standards. A committee might look through a seventh-grade textbook and deter-
mine that the textbook does not support this standard sufficiently, but on further 
inspection find that it was developed in earlier grades.
	 In addition to looking at the breadth of the mathematics covered in a curricu-
lum, an adoption committee should also look at the attention to the depth of con-
tent. Looking at the mathematical depth of all curricular standards will likely be 
too time-consuming for most adoption committees, so committees may want to 
focus on one or two topics. This was another major difference between the evalu-
ation methods of AAAS and Mathematically Correct. AAAS chose six specific 
benchmarks, focusing on both concepts and skills. For example, its benchmark 
for number concepts was “The expression a/b can mean different things: a parts 
of size 1/b each, a divided by b, or a compared to b.” By contrast, the eleven gen-
eral criteria used in the Mathematically Correct study covered a broader range 
of subject matter but concentrated primarily on procedural knowledge. With 
this consideration in mind, a middle school textbook-adoption committee might 
choose a specific topic (e.g., linear functions) and analyze the extent to which this 
topic is explored in depth across the textbook series. This in-depth analysis might 
examine such things as the use of different representations of linear functions, 
emphasis on an understanding of slope as a constant rate of change, attention to 
applying knowledge to different contexts, and preparation for the study of non-
linear functions. 
	 Although it is important to review the breadth of specific mathematical top-
ics that are addressed in a textbook series, it is equally important to look in depth 
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at whether those topics are presented in a way that builds both procedural and 
conceptual knowledge of mathematics.

Support for Students’ Learning
Does the curriculum provide quality materials to support students’ learning?
	 Materials that promote concept development, skills practice, and problem 
solving are primary features of the student textbook. Other useful materials, 
such as differentiated lessons, lessons involving technology, software supporting 
technology lessons, student assessments, and manipulatives, may be available in 
ancillary materials supplied with the student and teacher editions. It is easy for 
teachers to be impressed by the number and diversity of supplementary materi-
als that textbook companies offer to potential users, but the quantity of ancillary 
materials should not be the main consideration when assessing materials that 
support students’ learning. Adoption committees must also consider the quality 
of the supplemental materials. High-quality materials should give teachers op-
portunities to differentiate instruction through remediation and enrichment while 
providing a framework for learning that is consistent with the instructional de-
sign of the core curriculum.

Support for Teachers’ Learning
Is sufficient guidance for the teacher provided to implement the curriculum  
effectively?
	 Although textbook publishers generally supply materials for helping teach-
ers plan for instruction, they do not all supply the same type or amount of support 
for teachers. Tarr and others (2006) suggest that the best textbooks offer many 
different types of support for teachers, not just “a roadmap of what to teach” 
(p. 53). Textbook materials should furnish pedagogical support to help teach-
ers understand students’ common misconceptions. Additionally, they should help 
teachers make instructional decisions by providing examples of what students 
might think or say during class discussions. 
	 NCTM’s (2000) Teaching Principle states, “Teachers need to understand the 
big ideas of mathematics and be able to represent mathematics as a coherent and 
connected enterprise” (p. 17). High-quality mathematics textbooks require teach-
ers to have conceptual understanding of mathematics and knowledge of how to 
teach it. Thus, curricula should facilitate teachers’ learning and understanding of 
mathematics rather than just guide teachers’ actions (Stein, Remillard, and Smith 
2007). For example, figure 15.2 illustrates common misconceptions that high 
school students have about box plots, offering support for teachers to think about 
what their own students might encounter as they study this content.
	 Textbook-adoption committees should consider the need for, and costs of, 
professional development when choosing a new curriculum. Research suggests 
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that professional development is often needed to successfully implement new 
curriculum materials (Arbaugh et al. 2006). Effective professional development 
can support curriculum implementation by providing teachers with knowledge of 
the goals and strategies of the new curriculum, allowing collaborative conversa-
tions about upcoming units and providing time for interaction with experienced 
users of the curriculum (Reys, Reys, and Chávez 2004).

School and District Considerations
Does the curriculum support the local needs and values of the school and 
district? 
	 Schools and districts have unique attributes that should be considered during 
the textbook-adoption process. A school’s philosophy of learning and teaching 
of mathematics should be reflected in its choice of textbook. For instance, if the 
school or district values investigatory or discovery-based learning, the textbooks 
should reflect this type of pedagogy. During the textbook-adoption process, 
curriculum articulation between schools throughout the district should also be 
considered. For example, if a high school has adopted a student-centered cur-

Fig. 15.2. An example of support for teachers’ learning. (Source: 
Hirsch et al. [2008]. © 2008 by Christian R. Hirsch et al. Published by 

Glencoe/McGraw-Hill. Used by permission. All rights reserved.)
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riculum that emphasizes students’ investigation and collaboration, an elementary 
school curriculum that supports the preparation of students for the high school 
curriculum should be considered. Ideally, a district’s grades K–12 mathematics 
curriculum should reflect a coherent philosophy of teaching and learning so that 
students who move through the grade levels will not experience major shifts in 
pedagogical orientation or content emphasis.
	 The way in which other content areas (i.e. science, language arts) are taught 
in the school or district is another consideration when adopting mathematics text-
books. Ideally, the mathematics curriculum and pedagogy should be compatible 
with other content areas. Unfortunately, quite the opposite happens in many sec-
ondary schools: students may investigate scientific phenomena in science classes 
but experience mathematics learning through teacher-centered instruction. This 
experience can build negative dispositions toward mathematics because students 
come to view mathematics as a static body of knowledge without any room for 
creativity (Wilkins and Ma 2003).
	 The textbook-adoption committee should consider whether a textbook series 
meets the diverse needs of the students in the district. For example, students not 
proficient in the English language may have a difficult time understanding mathe
matical concepts if the textbook relies heavily on verbal description. A good cur-
riculum should provide learning support for these students and their teachers. This 
support might include suggestions for graphic organizers, bilingual dictionar-
ies, highlighted mathematics vocabulary and main ideas, and concrete examples 
(Pawan and Sietman 2007). The textbook excerpt in figure 15.3 shows how an 

Fig. 15.3. An example of learning support for English language learners. 
(Source: TERC [2008]. © 2008 by Pearson Education, Inc. Used by 

permission. All rights reserved.)
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elementary school teacher can support nonnative English speakers’ learning about 
rational numbers using concrete, real-world examples. Additionally, a curriculum 
should offer teachers lesson adaptations for students with learning difficulties and 
enrichment opportunities for advanced students. For example, figure 15.4 shows an 
adaptation of a fourth-grade geometry lesson in which students build on their prior 
knowledge about clocks to learn about angle measurements.

	 NCTM (2000) states that technology is essential to mathematics teaching 
and learning and affects what mathematics is taught. The textbook-adoption 
committee should carefully evaluate the types of technology that the curriculum 
advocates and how it is used (e.g., drill and practice, computational efficiency, 
exploratory learning opportunities, etc.) to determine whether the materials align 
with the school’s learning goals and access to technology. If the current availabil-
ity of technology is insufficient, schools may need to invest in additional technol-
ogy or consider different curricula in which the instruction is less dependent on 
technology.

Fig. 15.4. An example of support for differentiated learning.  
(Source: Bell et al. [2004]. © 2004 by McGraw-Hill Education.  

Used by permission. All rights reserved.)
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Research on the Curricular Outcomes and 
Effectiveness
What does research tell us about the efficacy and implementation of particular 
curriculum materials?
	 Can research tell us which textbook series is best for a particular school? 
Unfortunately, the answer is no (Usiskin 1999). Many factors affect students’ 
learning outcomes, and these factors can be difficult to identify and control  
(Hiebert 1999). However, research can have an impact on the curricular choices 
that textbook-adoption committees make. On the basis of a review of the re-
search, adoption committees can learn what obstacles teachers have encountered 
in the enactment of new curricula and how they overcame such obstacles. Addi-
tionally, adoption committees can review evidence on the impact of textbook use 
on teachers’ decisions and students’ learning (Stein, Remillard, and Smith 2007).
	 Research detailing the effectiveness of curricula is available from many 
sources, as shown in figure 15.5. Senk and Thompson (2003) have compiled an 
informative book with detailed discussions about twelve standards-based cur-
ricula and commentary about these curricula at the elementary, middle, and high 
school levels. The National Research Council (2004) evaluated the quality of 
curriculum research studies and compiled a thorough list of research articles 
related to curricular effectiveness. Professional journals, such as the Journal 
for Research in Mathematics Education, the Journal for Mathematics Teacher 
Education, and School Science and Mathematics, feature articles on the effects 
of written curricula. (Some of these are listed in the reference section of this 
article.) The Center for the Study of Mathematics Curriculum has created an 

Sources for Research about Mathematics Curricula

•	 Standards-Based Mathematics Curricula: What Are They? What Do 
Students Learn edited by Senk and Thompson (2003)

•	 On Evaluating Curricular Effectiveness: Judging the Quality of K–12 
Mathematics Education by the National Research Council (2004)

•	 Professional research journals
	 —	 Journal for Research in Mathematics Education
	 —	 Journal for Mathematics Teacher Education
	 —	 School Science and Mathematics
•	 Center for the Study of Mathematics Curriculum Web site, http://

www.mathcurriculumcenter.org/literature.php
•	 What Works Clearinghouse Web site, http://ies.ed.gov/ncee/wwc/ 
•	 Publishers’ and authors’ Web sites
•	 Conferences, workshops, and seminars (e.g., AERA, AMTE, NCTM 

Research Presessions)
•	 Pilot studies completed by local schools

Fig. 15.5. Sources for research about mathematics curriculum materials
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online database of research literature related to mathematics curricula that can 
guide adoption committees to available research. The What Works Clearinghouse 
(WWC) has collected and screened research on the effectiveness of elementary 
and middle school textbooks; their findings are available on the WWC Web site, 
http://ies.ed.gov/ncee/wwc/. Additional research and the results of pilot tests of 
curricula are often available on publishers’ or authors’ Web sites. A school or 
district might also consider conducting its own pilot test of a curriculum that it is 
interested in implementing. Such a pilot allows a school or district to (1) evaluate 
whether the curriculum meets the specific needs of its students and (2) acquaint 
some teachers with the details of the curriculum materials. 

Summary
	 We began this article by introducing Ms. Rhodes, a concerned mathemat-
ics teacher contemplating the textbook-adoption process. With teachers like Ms. 
Rhodes in mind, we have developed a rubric for evaluating mathematics cur-
ricula (see the Appendix that follows) on the basis of the factors presented in 
this article. The purpose of the included rubric is to offer a framework to foster 
informed discussions about textbook review. The rubric was not designed to be 
exhaustive of factors to be considered. Furthermore, it is not a stand-alone docu-
ment, but was instead written to be used in conjunction with the context provided 
by this article. Sample rubrics used by several school districts can be found in 
Goldsmith, Mark, and Kantrov (2000). In addition, figure 15.6 lists resources that 
we believe will give teachers like Ms. Rhodes additional insights into the adop-
tion and selection of mathematics textbooks.

Additional Resources for Mathematics Textbook 
Adoption (see full references in References section)

•	 “Why Mathematics Textbooks Matter” by Reys, Reys, and Chávez 
(2004)

•	 “Selecting High Quality Mathematics Textbooks” by Tarr and others 
(2006)

•	 “The Development and Publication of Elementary Mathematics 
Textbooks: Let the Buyer Beware!” by Reys and Reys (2006)

•	 Guiding Curriculum Decisions for Middle-Grades Mathematics by 
Goldsmith and Kantrov (2001)

•	 Perspectives on the Design and Development of School Mathematics 
Curricula edited by Hirsch (2007)

•	 Choosing a Standards-Based Mathematics Curriculum by Goldsmith, 
Mark, and Kantrov (2000)

Fig. 15.6. Additional resources for mathematics textbook adoption



Considerations in the Review and Adoption of Mathematics Textbooks� 225  

	 In this article, we have not advocated the use of any particular curricula or 
types of curricula, because we believe that curricular choices should be made 
in the context of the local school. The availability of new types of curriculum 
materials has changed the textbook-adoption process by giving educators more 
choices. However, by having more choices, textbook-adoption committees are 
faced with a more complex task. We encourage textbook-adoption committees 
to take heed of a variety of considerations when examining curricula, including 
analyzing the type of instruction and the content, the supports for both students’ 
and teachers’ learning, school and district needs, and research related to students’ 
learning outcomes.
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Curriculum as a Change Agent: 
High Schools That Rise to  
the Challenge and What  
They Stand to Gain

Kasi Allen-Fuller 
Margaret Robinson 
Eric Robinson

A preservice teacher in a local high school arrived for his graduate seminar 
on teaching mathematics to adolescents and immediately slumped in his 

seat. “I’m so depressed,” he announced to the group, shaking his head. When 
queried, he shared that much of his day had been spent shadowing a tenth-grade 
student. In his journal he wrote,

I don’t know how they stand it. I couldn’t stand it, and I wasn’t even there all 
day.  The lessons are so monotonous it makes you crazy. They just sit there and 
sort of listen or take notes or respond to the same leading, empty questions. I 
just thought with the Standards and all the new technology and everything that 
it would be better than when I was in school. But it’s not. And yet, it absolutely 
has to be. We can’t just keep doing the same old thing.  

This observation parallels the conclusions of researchers who have studied 

The work reported in this paper was supported, in part, by grants from the National Sci-
ence Foundation (ESI-9619168, ESI-0001377, and ESI-0137772). The views and conclu-
sions expressed are those of the authors and not necessarily those of the Foundation.
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secondary school mathematics classrooms in the United States (Welch 1978; 
Stigler and Hiebert 1999; Weiss et al. 2003). Such sentiment also reflects com-
mon criticisms of United States high school mathematics education articulated 
in nearly every call for reform since the work of the Committee of Ten in 1893. 
These criticisms include (1) lack of rigor, (2) irrelevance to life outside of 
school, (3) a system that perpetuates inequity, and (4) sheer boredom on the 
part of students, to the point that many leave school altogether (Grubb and 
Oakes 2007) or abandon the study of mathematics as soon as they have earned 
the required credits. Despite the repeated calls for reform, little has changed.
	 Some secondary schools are addressing this issue by initiating major cur-
riculum reform. For the past ten years, we have studied and supported dozens 
of schools and districts that have succeeded in pursuing a decidedly different 
path with respect to high school mathematics. These institutions acknowledge 
the right of all students to learn powerful mathematics and the capacity of all 
teachers, when given adequate resources and support, to create a learning envi-
ronment in which every young person can succeed. Consistent with the vision of 
the National Council of Teachers of Mathematics (NCTM), they maintain that 
meeting current challenges requires reconceptualizing the classroom experience 
that has dominated high school mathematics education in the past century, in-
cluding updating mathematical content, adjusting pedagogy, making use of tech-
nology, and attending to issues of access and equity. Leaders in these institutions 
believe that the choice of curriculum materials makes a substantial difference 
when initiating and supporting real, significant, and needed change in second-
ary school mathematics classrooms. Consequently, these schools and districts 
elected to implement one of the multiyear, integrated high school mathematics 
curriculum programs developed with funding from the National Science Founda-
tion (NSF)1—programs reflecting an extended research and design phase aimed 
at precisely the classroom issues raised here.
	 The multiyear programs that resulted from the NSF investment in high 
school mathematics curriculum development share many common attributes. All 
were designed and field-tested by teams composed of mathematicians and teach-
ers with the goal of producing rigorous new mathematics courses that would also 
be relevant to teenagers. Each of these programs chose an integrated design in 
which concepts from multiple mathematics strands are woven throughout each 

1. The five high school mathematics programs that resulted from the NSF investment are 
Mathematics: Modeling Our World, Contemporary Mathematics in Context, Interactive 
Mathematics Program, MATH Connections: A Secondary Mathematics Core Curriculum, 
and SIMMS Integrated Mathematics: A Modeling Approach Using Technology. In our 
earlier work, we have referred to this collection as the “COMPASS-affiliated” programs. 
For the purposes of this article, we refer to them as the NSF-funded high school mathe
matics curricula. Although curricular distinctions exist across the five NSF-funded high 
school programs, our focus is on their commonalities.
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course, a marked departure from the traditional sequence (algebra 1, geometry, 
algebra 2, and so on) that has largely defined secondary school course offerings 
in the United States for more than a century. All these curricula assume the pres-
ence of technology, especially graphing calculators or other dynamic graphing 
software. Finally, these programs encourage a student-centered pedagogical ap-
proach that includes cooperative group work; extended, inquiry-based problems; 
and the communication of ideas through writing and students’ presentations. The 
shifts in both content and pedagogy place new demands on teachers as well as 
students.
	 The COMPASS Center2 was founded under the premise that implementing 
comprehensive new mathematics programs at the high school level would require 
much more work on the part of teachers, schools, and districts than is entailed 
when adopting a traditional high school textbook series. Although many crucial 
barriers were identified by COMPASS Center staff early on, successful imple-
mentation proved to be even more demanding than anticipated in nearly every 
respect. And we are still learning. What we know without a doubt is this: when 
effectively implemented, these coherently designed mathematics curriculum 
programs can, indeed, drive comprehensive change that results in significant, 
authentic improvement for schools, teachers, and students. The implementation 
process is complex and decidedly long-term. However, for those who rise to the 
challenge, the benefits can be substantial, wide reaching, and enduring.

Context for Change

Attaining the vision … will require that all concerned be committed to im-
proving the futures of our children. The task is enormous and essential. All 
students need an education in mathematics that will prepare them for a future 
of great and continual change. (NCTM 2000, p. 8)

	 Adults in America have witnessed frequent and repeated mandates for im-
proving grades K–12 mathematics education in their lifetime. The publication of 
A Nation at Risk (National Commission on Excellence in Education 1983) was 
a federal call to action that affected educators across the country, particularly in 
mathematics and science, subjects in which only a minority of students then suc-
ceeded at the advanced level both in and beyond high school. A primary concern 

2. As the development phase for these programs drew to a close, NSF recognized the need 
to support and study their use in real schools and districts. COMPASS (Curricular Options 
in Mathematics Programs for All Secondary Students) was created in 1997 to provide 
a coordinated and collective dissemination effort for the five NSF-funded high school 
mathematics projects. Initially, COMPASS consisted of a central site and five satellite 
sites, one for each of the curricula, which enabled the center to communicate a shared vi-
sion as well as provide curriculum specific information and assistance.
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at the time was the perceived gap between what students were learning in school 
and what they would need to know to be productive citizens in an increasingly 
technological society. The recommendations emphasized the need for all young 
people to master relevant mathematics and science content, to solve engaging 
real-world problems, and to conduct meaningful research.
	 During the period of A Nation at Risk, consensus appeared to be growing 
among mathematicians as well as educators that grades K–12 mathematics had 
become a fixed set of procedures to master as opposed to a dynamic discipline 
capable of powerfully shaping the modern world. NCTM created a set of recom-
mendations to help move the field ahead in this regard. Curriculum and Evalua-
tion Standards for School Mathematics (NCTM 1989) offered a bold vision for 
what grades K–12 mathematics education might be—a vision strikingly different 
from what most United States adults had experienced themselves as students.
	 Given the nature of the changes proposed, any attempt to enact the NCTM 
(1989) Standards document was sure to be daunting, nowhere more so than at the 
high school level. Teachers and administrators could see the value of the Stan-
dards, but envisioning what curriculum and instruction might entail, especially 
given existing course offerings and materials, proved difficult. At this point, the 
NSF stepped in and provided funding (1992−97) for the development of curricu-
lum programs that would enable schools and districts to implement the Standards 
document’s vision, taking into account the latest research on learning and teach-
ing mathematics as well as up-to-date content and technology.3 The developers 
reconsidered all assumptions about secondary school mathematics education, so 
as to redefine the high school mathematics teaching and learning experience.
	 The five resulting comprehensive programs each had its own individual 
character. Still, they strongly resembled a family of curricula: they all chose to 
integrate topics in a coherent fashion and emphasize higher-order thinking, often 
through mathematical modeling and appropriate use of technology. Most nota-
bly, they were all highly ambitious programs that involved much more than in-
cremental change in current course offerings.4 Full implementation necessitated 
replacing the familiar algebra 1–geometry–algebra 2 sequence with a rigorous 
program of integrated courses that were cumulative as well as comprehensive 
(Hirsch 2007; Robinson et al. 2000).
	 For more than a decade, the COMPASS Center has worked to inform the 
field about these materials and to support those who choose to implement them. 
The need remains for creating awareness, articulating the Standards’ vision, and 
assisting schools that engage in curriculum-led improvement of their mathemat-

3. We acknowledge that the five NSF-funded high school programs and their counterparts 
at the middle and elementary school levels are not the only mathematics curricula that 
claim to embody the NCTM Standards.

4. The first editions of these five curricula became available for purchase in 1997. 
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ics programs. In an effort to provide structured, ongoing support, COMPASS has 
organized a network of experienced implementer high schools, the intention be-
ing that member schools would support and learn from one another as they face 
similar issues.

This meeting has been an eye-opening experience. It’s given me my breath 
back knowing that our school is not only not alone, but also traveling down 
the right path. It was so refreshing hearing people speak honestly about these 
programs. They’re not perfect, but they are definitely firmly rooted in the best 
intentions for our students.

—High school mathematics department chair

Building a network of teams from multiple implementation sites has proved to 
be a powerful strategy for supporting ongoing secondary school mathematics 
improvement in schools and districts as well as across the nation. 

Who Dares?
Only those who dare to fail greatly can ever achieve greatly.

—Robert F. Kennedy

	 Comprehensive mathematics programs, such as those developed with National 
Science Foundation funding, go beyond the scope of an average textbook. Schools 
that adopt these integrated materials and the teachers who undertake their imple-
mentation distinguish themselves in multiple ways from their peers. For example, 
in prior studies of curricular decision-making, researchers have explored school 
and district readiness to use innovative programs like the NSF-funded curricula (St. 
John et al. 2000, 2005; Fuller et al. 2003). The findings suggest that most schools 
and districts in the United States are relatively satisfied with their secondary school 
mathematics programs. Among those who do express dissatisfaction and a desire 
to change, the majority would not choose to do so by completely reworking their 
course offerings; instead, they envision more of an incremental strategy, infusing 
new activities into the existing curriculum or choosing a new textbook for a spe-
cific course. Thus, the desire to fundamentally change the curricular approach sets 
implementers of the NSF-funded programs apart from their counterparts at the out-
set. As a group, the schools and districts that undertake major curriculum reform 
want, for many different reasons, to improve mathematics education in a deep and 
profound fashion.
	 Of the many factors that distinguish successful curriculum implementation 
sites from others engaged in improvement initiatives, we focus here on three qual-
ities that we have found to be the most crucial: motivation grounded in equity, 
connections to others doing similar work, and commitment to staying the course.
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Motivation 
	 Although improving students’ academic performance often serves as an im-
petus for considering programmatic change, the motivation for putting into place 
one of the NSF-funded high school programs generally runs deeper than simply 
improving scores on standardized tests or purchasing textbooks with newer copy-
right dates. Those who spearhead curriculum-led change efforts aim to make 
high-quality mathematics teaching and learning accessible to more students—
ultimately to all students. They view mathematics as intrinsically valuable and 
believe that success plays a crucial role in determining students’ future career 
options. They express particular concern over the extent to which mathematics 
serves as a barrier to students’ fully realizing their goals and achieving their aspi-
rations. Thus, leaders perceive implementation of these programs as an initiating 
event, setting in motion a process that will spur the realization of other broader 
goals.

Connections
	 Those who succeed with innovative high school mathematics curricula often 
indicate that connections to others engaged in, and dedicated to, similar work 
piqued their interest in making a change or helped them persist when the work 
became difficult. Each of the curricula is an instantiation of a much larger vision 
associated with the professional world of mathematics education. Connections 
to other improvement efforts5 and to schools pursuing similar goals have proved 
instrumental in nourishing implementation efforts. However it occurs, locally or 
long-distance, establishing relationships with like-minded educators decreases 
the feeling of isolation that comes with pursuing an alternative path and places 
the work in a larger context, creating increased leverage and providing a broader 
base of support for local change.

Commitment
	 Having companions in this work is particularly crucial owing to the scope 
and duration that implementation efforts require. The time span of a success-
ful curriculum implementation effort is generally at least five years—nearly the 
length of many district adoption cycles. It takes at least that much time, with 
administrative support, to phase in four years of courses, work with counselors, 
educate parents, help students acclimate to the new program, and quell critics. In 

5. In particular, sites have benefited from associations with other systemic reform ef-
forts funded by the National Science Foundation over the past fifteen years. These in-
clude but are not limited to the Rural Systemic Initiatives, the State Systemic Initiatives, 
the Local Systemic Change grants, the Urban Systemic Programs, and the Math Science  
Partnerships.
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short, implementing one of these programs is long-term, stay-the-course work—
figuratively and literally. To complicate matters, this longitudinal time line does 
not align particularly well with school adoption cycles or with other essential 
system processes, such as the revision of district or state standards, teacher turn-
over, and changes in administration. The bottom line is that every implementa-
tion effort proves to be an example of deeply committed educators—an array of 
teachers, department chairs, principals, and superintendents—daring to push on 
parameters of what the system traditionally finds acceptable so as to serve all 
students.

How It Happens

I almost quit teaching because I couldn’t find resources to teach in  
the ways that I wanted. If we hadn’t started this program, I was  
seriously considering leaving.

—High school mathematics teacher

	 In the best of worlds, there would be a single, effective step-by-step pro-
cedure for selecting, initiating, and sustaining comprehensive programmatic 
change that would apply to any school or district. However, no single prescription 
for success exists. To give a sense of the differences across implementation sites, 
we offer descriptions of two contrasting situations.

Suburban Districtwide Implementation
	 In a wealthy suburb, a widely respected superintendent aims to unify the 
curriculum by demanding that the district agree on textbooks that can be used 
across the district. When the elementary and middle level mathematics commit-
tees choose NSF programs for their respective grade level bands, there is strong 
pressure on the high school to do the same. Indeed, district mathematics leaders 
come close to requiring secondary school mathematics teachers to choose from 
one of the five NSF-funded high school curricula.

A Single Champion 
	 In a small, isolated, rural district with a single high school, one accom-
plished and influential mathematics teacher decides that implementing one of the 
NSF-funded high school curricula would be the perfect way to raise mathematics 
achievement of the district’s lowest-performing students and simultaneously im-
prove the mathematical learning experiences of all students. Leveraging support 
from a state reform effort, he convinces the rest of the mathematics department 
to join him with the district’s blessing.
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	 An implementation process that succeeds in one district might not work in 
another; yet, common elements surface repeatedly in schools and districts that 
have adopted one of the NSF-funded programs. Table 16.1 catalogs these ele-
ments. Undervaluing any one of these components can seriously undermine the 
implementation process.

Table 16.1
Core Elements of the Implementation Process

Element Elaboration Effect

Motivation Involves much more than student 
achievement 

Establishes reason for change and 
attracts others to the effort

Vision Incorporates the NCTM Stan-
dards, including the principle that 
all students can do mathematics 

Clarifies from the outset the goals 
and comprehensive nature of the 
improvement effort

Alignment of 
beliefs

Includes teachers, administrators, 
counselors, school board mem-
bers, and parents

Solidifies a base of support for the 
effort and allows for high-fidelity 
implementation 

Initial  
leadership

Speaks for, energizes, and shep-
herds the early work 

Rallies support and resources that 
safeguard the effort

Administrative 
endorsement

Authorizes programmatic change 
rather than incremental change 
and fosters supportive context

Prioritizes program goals and 
resources; presents public face, al-
lowing teachers to concentrate on 
classroom improvement

Professional 
development

Supports learning about the pro-
gram as well as the mathematics 
and pedagogy contained therein; 
involves personnel beyond  
teachers

Expands content knowledge and 
pedagogical skill; reinforces shared 
vision of improvement

Communication 
with  
stakeholders

Includes public events (e.g.,  
Family Math Night, school board 
meetings), newsletters, progress 
reports, and so on

Helps parents and community mem-
bers better understand the effort and 
their potential role in it 

Policies and 
Practices

Supports major change rather 
than incremental change

Protects the fidelity, viability, and 
sustainability of the effort

Benchmarks for 
progress

Incorporate baseline data, authen-
tic student work, and a variety of 
locally determined measures

Build internal and external confi-
dence in the program; allows for 
formative feedback

Networking Fosters collaboration among like-
minded educators and institutions

Eliminates debilitating isolation; 
assists fidelity and sustainability of 
implementation

Time Acknowledges that programs can 
take 5+ years to fully implement, 
realizing that there is no quick fix

Allows the effort to strengthen and 
build, leading to accrual of school, 
teacher, and student benefits 
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	 As the table suggests, curriculum implementation involving this type of 
comprehensive change requires a paradigm shift, and it affects people in all ar-
eas of the system—teachers, administrators, students, parents, community mem-
bers, and so on. Inside the school, the alignment of teachers’ beliefs and regular 
professional development facilitate this shift. Similarly, fostering administrative 
support and communicating with stakeholders outside the school help create an 
informed base of community support for the effort. Attending to such factors 
from the outset places less strain on the system and increases the implementation 
effort’s likelihood of success.

What Happens When Schools Dare?
Why not go out on a limb? Isn’t that where the fruit is? 

—Frank Scully

	 Operating outside the tradition, culture, and practice that have come to de-
fine secondary schooling is no easy task, as any implementer of the high school 
NSF-funded curricula will quickly point out. Although the process of putting 
such a program in place serves as a constant force of stretch and pull on the sys-
tem, this work can lead to numerous benefits for schools, teachers, and students.

Benefits to Schools
	 The benefits to schools begin with the selection process. Simply working 
together to articulate criteria for a new curriculum and reaching consensus about 
moving in the direction of a comprehensive program point toward a greater 
shared vision of mathematics teaching and learning within the building, not to 
mention a broader, deeper notion of mathematics as a discipline. When the con-
versation involves administrators, counselors, and teachers in other departments, 
as is generally true, the process also involves addressing issues of equity and 
reducing tracking. As the implementation takes hold, the process fosters a culture 
of raised expectations for all students. In this climate, powerful discussions also 
take place about the nature of mathematical rigor and how it involves more than 
what is measured on standardized tests (St. John et al. 2005).

Benefits to Teachers
	 The NSF-funded curricula are often referred to as “educative” because of the 
professional learning implicit in their use. High-fidelity implementation efforts 
include professional supports that go well beyond mathematics content knowl-
edge. Institutions that commit to one of these programs also dedicate themselves 
to providing a sustained, cumulative set of experiences that ground teachers in 
the vision underlying the new curricula, providing multiple opportunities over 
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time to internalize the underlying motivation for the change as well as the techni-
cal aspects of achieving it. Teachers report increased collaboration within their 
mathematics departments. They tell stories of learning new mathematics, coming 
to a deeper understanding of old topics, using more technology, having a new 
perspective on students in their classrooms, and completely rethinking how they 
teach (Resek 1999; Schoen et al. 2003).

Benefits to Students
	 Students notice the difference. They report enjoying mathematics more 
than they did before, as well as experiencing greater success; these outcomes 
lead to taking more mathematics courses. Students talk about seeing connec-
tions between mathematical ideas and between what they are learning and their 
lives. They speak about solving challenging problems and modeling real-life 
situations. And, beyond their meaningful mathematical experiences, they articu-
late with considerable candor the challenges and benefits of working in groups  
(Harwell et al. 2007; Huntley et al. 2000; Senk and Thompson 2003).

I was thinking the other day about what an incredible and important class math 
is. I was thinking about racism and the separatism we have at our school and 
how most of our high school is not designed to promote interracial friendships 
or activities. In math, we work together in a very diverse group solving prob-
lems which can apply to everyday life. Every aspect of our math program by 
itself is amazing and effective, and the combinations of all of them results in 
an environment where not only learning takes place but as if naturally with it 
comes interracial relationships and respect.

—Tenth-grade mathematics student using an NSF-funded program

When asked, students readily explain how their mathematics class is different 
from what they have experienced in the past. Table 16.2 lists some of the positive 
changes along with some of the derived benefits that we observe in classroom 
visits and have documented in our interviews with students and their teachers.

Building on Success

This meeting was far more beneficial than I ever thought it would be. The 
activities were a huge plus because they got us interacting with members of 
different innovative mathematics communities and they got us thinking about 
our individual programs and how to make them more stable. I didn’t need any 
input on the benefits of my program, but I did need to know that the problems 
I face in my school are the same as those in innovative mathematics programs 
all over the country.

—Mathematics teacher/COMPASS Points member
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Table 16.2
Changes in the Student Experience

Nature of the Change Benefit of the Change

Students experience multiple modes of 
work that include collaborating with their 
peers and making conjectures.

Rather than sit passively in class, students 
participate in their own learning; they 
have the opportunity to articulate mathe
matical ideas and justify their thinking.

In mathematics lessons, students begin 
with contexts and build toward concepts, 
often requiring that they explore and 
wrestle with unfamiliar problems and 
situations.

Students become more comfortable with 
tackling problems. Their mathematical 
knowledge is less cued to specific prob-
lem types. They persist rather than give 
up when faced with a new challenge.

Classroom activity focuses on students 
doing the mathematics rather than on 
a teacher demonstrating how to do the 
mathematics.

Students view their peers as resources, 
posing clarifying questions to their class-
mates as well as to their teacher. The 
teacher no longer holds all mathematical 
knowledge. A community of learners 
ensues.

Students are actively engaged in learning 
and exploring mathematics.

Students take more responsibility for their 
learning. They enjoy mathematics rather 
than endure it.

Students learn that there are multiple 
methods for solving almost any problem.

Students are open to the ideas of their 
peers and curious to discover alternative 
strategies. They begin asking the question, 
Is there another way?

Students verify and justify their mathe-
matical thinking through written and oral 
communication.

Students have the opportunity to engage 
in true mathematical discourse. They 
learn to defend their ideas and  
conclusions. 

Students experience multiple forms of 
assessment, including long-term research 
projects, journals, and portfolios.

Students view mathematics as a tool for 
research and discovery. They learn to 
write about mathematics, generate their 
own questions, and make presentations. 
Mathematics becomes more than com-
pleting daily exercise sets.

Mathematics is presented as a dynamic 
subject—attainable and necessary for all, 
ever-changing and largely responsible for 
most developments associated with the 
modern age.

Students feel empowered to participate in 
an increasingly mathematical world. They 
view mathematics as a tool for social 
change as well as technological progress.
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	 In our work with implementers of the high school NSF-funded curricula, 
we interact with schools and districts that have implemented their programs for 
more than a decade, others that are only beginning the process, and all those 
in between. Despite their varying years of experience, all understand that they 
are constantly learning and adjusting accordingly. Even among those who have 
been implementing the curricula the longest, rather than profess to have all the 
answers, they recognize that the work of implementation is constant, unyielding, 
highly dynamic, and context-specific. “You can never let up,” as one department 
chair has told us, and little can be assumed from one year to the next. So they 
strive to strengthen and safeguard their efforts by building on prior success and 
proactively responding to implementation challenges and barriers—knowing 
that the work of implementation never ends. It evolves.
	 Users of the NSF-funded high school programs often experience a “hon-
eymoon phase” followed by a period of considerable challenge (St. John et al. 
2005).  Similarly, the work can level off, and implementers find themselves need-
ing to climb beyond their plateau. A number of patterns for continued success 
beyond the initial implementation are shown in table 16.3. Such information may 
help schools embarking on a program of comprehensive change, now or in the 
future. These actions and attitudes are central to the work of schools and districts 
that have dared to implement one of these innovative curricula and are succeed-
ing in doing so today—unequivocally, readily, and continually.

Concluding Reflections

These are exciting times in mathematics [education]. Despite the difficulties 
in designing, testing, and marketing new mathematics curricula, the need for 
significant improvement in student learning requires us to overcome those  
difficulties.

	 —Robert Reys,
“Curricular Controversy in the Math Wars”

The implementation efforts highlighted in this article transcend the status quo. 
Curriculum, here, is much more than a list of topics to be covered; rigor is more 
than the ability to perform intricate computation; improvement is more than re-
sponding to a mandate for change; and success is more than increased scores 
defined by the limited measurement capabilities of high-stakes tests.
	 The NSF-funded high school mathematics curricula, with the necessary pro-
fessional resources and supports, provide the impetus for unprecedented change. 
The development effort that yielded these curricula took years of research and 
design, with input from university mathematicians, mathematics educators, and 
teachers. Moreover, these comprehensive programs each went through several  
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Table 16.3 
Central Actions and Attitudes

•	 Embrace communication as part of the ongoing work
	 Every year, new students and their parents enter the school community. Turnover 

among staff and administration is also a constant. Therefore, those shepherding the 
implementation must see public relations as something they engage in on a regular 
basis. As the implementation proceeds, this effort will go beyond communicating 
the vision motivating the improvement effort and will include sharing results, such 
as test scores, student portfolios, data on course-taking patterns, and so on.

•	 Ensure that opportunities for rich professional learning continue
	 The implementation passes through various stages. In each one, the professional 

development needs are different. As the effort continues, some teachers and admin-
istrators (especially newcomers) will still need training on the “nuts and bolts” of 
the program, while experienced users will benefit from more advanced work, such 
as exploring in more depth a particular area of mathematics content, relevant tech-
nology, or appropriate pedagogy. However it happens, meeting this range of needs 
is crucial. 

•	 Empower students and give them a voice
	 Students can be some of the strongest advocates for using NSF-funded curricula. 

Once they make the transition from a more sequential, topic-based approach, many 
speak very articulately about how the experience has changed them, particularly 
their conception of what mathematics is—and what it is not. We have seen students 
play a powerful role in the communication effort associated with implementation.

•	 Cultivate partners in the implementation process at all levels of the system
	 Once the implementation is up and running, it is imperative to determine who truly 

supports the effort and to foster those relationships—within the building, among 
members of the larger community, with other schools and districts, and including 
policymakers. For example: Does the science department value the new mathemat-
ics program because of the extensive use of applications? Do the English teachers 
appreciate the extent to which students are writing in mathematics class now? Can a 
nearby school share costs for professional development? Can the local college help 
host a community math night?  

•	 Foster leadership for mathematics improvement at all levels
	 Teachers cannot be the only spokespeople for an improvement effort grounded 

in innovative curriculum. Others within the system must understand, participate 
in, and be prepared to defend the work. This often includes acting on policies and 
practice seemingly tangential to the work: for example, committing to hiring teach-
ers that are willing to participate in the effort or supporting a schedule that accom-
modates longer periods for engaging in lablike mathematics activities. Not enough 
can be said about the role that a thoroughly supportive school context can play in 
strengthening the implementation.
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iterations, guided by extensive field-testing involving real classrooms and students. 
Make no mistake: the end result is a quality and cohesiveness far beyond that gen-
erally encountered with typical textbooks. The curricula are also outside the realm 
of what a district-based curriculum development project could be expected to cre-
ate, given the limits of time, resources, and expertise. The successful publication 
of these innovative curricula as a family of programs stands as an existence proof 
that comprehensive curriculum materials can be developed that embody the vision 
of the NCTM Standards and address the needs of the modern era.
	 Despite their research-driven design and alignment with NCTM Standards, 
these curriculum programs are found in a smaller percent of U.S. schools and 
districts than their commercial counterparts. Instead, they tend to be adopted by 
a small niche market of schools and districts that possess the necessary quali-
ties and contextual elements to support implementation. This outcome may be 
because, in many respects, the greatest benefits associated with these curricula—
for example, the inclusion of modern mathematical content—can also pose the 
greatest challenges to implementation. Therefore, the schools and districts that 
elect to put such programs in place are consciously making improvement in what 
mathematics students learn and how they learn it their top priority.
	 Linda Darling-Hammond argues that, as a nation, we need to shift from 
educational structures that “design controls” to those that “develop capacity” for 
improvement (Darling-Hammond 1993). This is, in fact, what those who dare 
actually do. Where there is complexity in the system, those who dare provide 
clarity of vision and purpose. Where there is resistance, those who dare help 
foster support among the teachers, administrators, and school boards, develop-
ing deeper professional identity and leadership qualities that extend beyond the 
boundaries of their own classrooms. Where culture breeds inertia, those who 
dare reach out to explain and involve others in taking action. Where there is the 
common phenomenon of teachers’ isolation, those who dare work to build col-
laborative opportunities.
	 A lingering question is, why dare? Why? Because students deserve more—
all students! Schools that rise to the challenge enable students to reason mathe
matically; to use content and procedures flexibly and in new situations; to carry 
their knowledge beyond the classroom and the temporal boundary of end-of-
course examinations; and to develop persistence in mathematical problem solv-
ing. Schools that dare assist students in developing the ability to invoke a math-
ematical perspective: to understand what mathematical conclusions and compu-
tations are based on; to see the mathematical features in everyday and job-related 
situations; and to make decisions involving mathematical information. These 
skills are fundamental to supporting the next generation of young people in fac-
ing the unique challenges of the twenty-first century—and pursuing their career 
dreams and aspirations with mathematical confidence and competence.
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Myths about Curriculum 
Implementation

Denisse R. Thompson 
Sharon L. Senk

Think about a school or school district you know well. Consider the following 
statements. Which are true in that school or district? How do you know?

•	 If a topic is in the mathematics textbook, teachers teach it.

•	 Teachers who use the same mathematics textbook teach the same  
content.

•	 Teachers who use the same textbook offer the same opportunities for 
students to continue learning mathematics through homework.

•	 Teachers of the same mathematics course have the same expectations 
for how their content coverage prepares students for standardized tests.

	 Curriculum materials have a powerful influence on what students learn and 
what they have an opportunity to learn (Begle 1973; Stein, Remillard, and Smith 
2007; Valverde et al. 2002). Mathematics teachers have long used textbooks as 
a basis for their instruction (Grouws and Smith 2000). With the publication of 
Curriculum and Evaluation Standards for School Mathematics (National Coun-
cil of Teachers of Mathematics [NCTM] 1989) and Principles and Standards for 
School Mathematics (NCTM 2000), attention focused on the role of textbooks 
and curriculum materials to guide instruction, including government support to 
fund various curriculum projects with the goal of developing materials aligned 
with the Standards (Senk and Thompson 2003).
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	 School districts or states often mandate the textbook that teachers are ex-
pected to use as the basis for instruction; that is, they determine what is often 
called the intended curriculum for a course (Valverde et al. 2002). However, how 
that textbook is implemented in a classroom (i.e., the implemented or enacted 
curriculum) is a significant determiner of what students are likely to learn. Some 
districts provide pacing guides in an attempt to ensure that students in all the 
schools make the same progress through their textbook. Standardized achieve-
ment assessments are created on the basis of assumptions about what students 
will have had or should have had an opportunity to learn at a particular grade or 
from a particular course (the assessed curriculum); results on these tests are then 
used to determine the achieved curriculum. But what evidence exists that the 
intended curriculum, the implemented or enacted curriculum, and the assessed 
curriculum (which ultimately determines information about the achieved cur-
riculum) are aligned?
	 In this article, we focus on the statements from the beginning of this article 
and provide evidence that all are false. To justify our claims, we draw on data 
from studies by other researchers and from field studies conducted as part of 
the development of curriculum materials from the University of Chicago School 
Mathematics Project (UCSMP). UCSMP is a grades K–12 curriculum develop-
ment and research project that has been producing mathematics curriculum ma-
terials since its inception in 1983. As the secondary school materials are devel-
oped and revised, they are field-tested in schools for an entire school year prior 
to further revision and commercial publication. During the school year, teachers 
participating in the field studies, whether using the UCSMP or comparison cur-
riculum, complete surveys about various aspects of their use of textbooks and 
other instructional materials. Data provided by these teachers, as well as data 
from other researchers about curriculum implementation, give evidence that the 
four statements that begin this article are myths. We show that far more vari-
ability occurs among the intended, implemented, and assessed curriculum than is 
often imagined by educators and policymakers.

Myth 1: If a Topic Is in the Mathematics 
Textbook, Teachers Teach It
	 On the basis of the 2000 National Survey of Science and Mathematics Edu-
cation, Whittington (2002) reported that middle and high school mathematics 
teachers estimated the percent of their textbook that they expected to cover that 
academic year for a particular class. Table 17.1 summarizes the results of antici-
pated coverage. The modal response from both middle school and high school 
teachers indicated they expected to cover between 75 and 90 percent of their 
textbook. However, considerable variation existed within each group.
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	 More recently, Tarr and his colleagues (2006) studied a group of thirty-nine 
middle school teachers throughout the school year. On average, teachers using 
NSF-funded curricula taught about 60 percent of the lessons in their textbooks; 
teachers using publisher-generated curricula taught about 69 percent of the les-
sons in their textbooks. These results are based on actual records of classroom 
implementation, not on estimates, and are somewhat lower than the estimates 
reported by Whittington.
 	 Figure 17.1 summarizes data from chapter-coverage forms completed by 
UCSMP or comparison teachers collected during field trials conducted between 
2005 and 2007 of four courses intended for use in grades 7–10. Thus, these data 
complement and update those of Whittington (2002) and Tarr and his colleagues 
(2006). As in the study by Tarr and others, the data indicate actual coverage of 
the textbook rather than estimated coverage. The graphs represent data from sixty 
teachers in twenty-eight schools in sixteen states. Although the median textbook 
coverage across the four course levels differs somewhat, varying from 69 per-
cent at prealgebra and algebra 2 to 76 percent at algebra, the variability within a 
course is typically quite large, even among the relatively small number of teach-
ers reflected in each box plot.
 	 All these studies document wide variability in the percent of lessons in a 
textbook that are actually taught by teachers. The vast majority of teachers do 
not teach all lessons in their textbooks. This finding is not likely to shock some 
readers, who may struggle to complete all lessons in their own textbooks. Given 
that a textbook contains lessons that teachers do not teach, in what ways do the 
choices teachers make vary, and how are their choices of textbook material to 
cover reflected in their assignments or assessments? These issues are the focus of 
the next three myths.

Table 17.1 
Teachers’ Estimated Textbook Coverage for a Particular Target Class

Percent of Textbook Estimated to Be Covered

 
Level

 
N

0% – 
49%

50% – 
74%

75% – 
90%

More than 
90%

Middle school 634 6 30 47 17

High school 1367 7 28 46 19

Note: Based on Whittington (2002).
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Myth 2: Teachers Who Use the Same 
Mathematics Textbook Teach the Same 
Content
	 When teachers are using the same textbook, how much and what content 
is covered within or across schools? Figure 17.2 reports the percent of lessons 
taught by sixty-four teachers using the field-trial versions of the third edition of 
UCSMP secondary school materials across forty-six schools in twenty states. Of 
these teachers, only one (a teacher in the algebra study) taught 100 percent of 
the lessons in the textbook. Although the median percent exceeded 60 percent 
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for six of the seven courses, in four of the courses at least one teacher taught less 
than 50 percent of the textbook lessons. Even two teachers in the same school 
did not teach the same content in the Transition Mathematics study; one of the 
teachers was out for medical reasons quite a bit during the year, and her students 
covered 1.5 fewer chapters than students in the classes of the other teacher. Thus, 
even when teachers were using the same textbook, considerable variability was 
observed in the percent of the lessons taught for each course.
	 When Tarr and his colleagues (2006) analyzed lessons taught and omitted 
by a group of middle school teachers using the same textbook, they found that 
some teachers omitted material that came primarily toward the end of the text-
book; others omitted lessons regularly throughout the textbook; still others omit-
ted large portions of the early textbook material. As illustrated by data from the 
use of the UCSMP Advanced Algebra, Third Edition, textbook, we found similar 
results in our research.
	 Table 17.2 reports the percent of lessons, other than end-of-chapter review 
materials, by thirds of the textbook, taught by ten teachers in seven states who 
were using the field-trial version of UCSMP Advanced Algebra, Third Edition. 
Only 40 percent of these teachers taught at least three-fourths of the lessons in 
the textbook. Although the mean number of lessons taught in the first two-thirds 
of the textbook is 89 percent, the mean drops to 36 percent of the lessons taught 
in the final third. So most students never had an opportunity to learn the content 
in the final third of the textbook.

Table 17.2 
Percent of Lessons Taught in Field-Trial Version of UCSMP Advanced Algebra, 
Third Edition, by Teacher 

 
Teacher

Chapters 1–4
(n = 36)

Chapters 5–8
(n = 35)

Chapters 9–13
(n = 45)

Chapters 1–13
(n = 116)

A 100 86 16 63
B 69 80 31 58
C 97 71 22 60
D 64 83 33 58
E 94 91 53 78
F 81 100 36 69
G 92 94 71 84
H 100 91 42 75
I 97 100 0 60
J 94 89 51 76

mean 89 89 36 68
s.d. 12 9 19 9

Note: n = number of lessons.
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	 Figure 17.3 illustrates the lesson coverage of the Advanced Algebra teachers 
using a display similar to those used by Tarr and his colleagues (2006). Many 
teachers taught lessons in sequence, so the percent of lessons covered is a matter 
of pace. However, three of the teachers omitted most of chapter 4 on matrices and 
transformations with connections to geometry. Some teachers omitted most of 
this chapter because the content was not part of their district or state guidelines at 
this level. However, transformations are used in several lessons about functions 
later in the text. It is not clear how omitting the lessons in chapter 4 affected stu-
dents’ opportunity to understand the lessons involving functions in subsequent 
chapters. Also, notice that there was not a single chapter in which all ten of these 
teachers taught all lessons in the chapter.
	 Thus, even when teachers were teaching from the same intended curricu-
lum, the actual pattern of coverage—that is, the implemented curriculum—was 
quite different. These data reinforce the following comments made by Kilpatrick 
(2003, p. 473): 

Two classrooms in which the same curriculum is supposedly being “imple-
mented” may look very different; the activities of teacher and students in each 
room may be quite dissimilar, with different learning opportunities available, 
… and different outcomes achieved. 

Myth 3: Teachers Who Use the Same 
Textbook Offer the Same Opportunities 
for Students to Continue Learning 
Mathematics through Homework
	 Teaching a lesson is only one aspect of curriculum implementation. To 
achieve proficiency with mathematics, students typically need opportunities 
outside class to engage with the mathematics, individually or in groups. Most 
mathematics teachers regularly assign homework as a means for students to 
deepen their understanding of the ideas encountered in lessons. So homework as-
signments are a crucial aspect of curricular implementation that likely influences 
students’ learning, that is, the achieved curriculum. To illustrate how homework 
assignments vary, we present data about teachers’ use of the UCSMP Algebra 
textbook.
	 Table 17.3 reports the percent of questions assigned by teachers teaching 
from the UCSMP Algebra, Third Edition, curriculum and is based on just those 
lessons taught by the given teacher. As described in the UCSMP teachers’ edi-
tions, sets of homework questions in the UCSMP curriculum are designed so 
that almost all problems should be assigned to students. Thus, assigning only 
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even-numbered or odd-numbered problems generally does not offer sufficient 
opportunities to achieve proficiency.

	 Despite the differences in the percent of lessons taught (see fig. 17.2), five 
of the six teachers generally assigned most of the problems in those lessons to 
their students. However, Teacher F assigned considerably fewer problems—fewer 
than half of those given in the lessons. So, in addition to covering only 58 percent 
of the lessons in the book, the teacher provided fewer opportunities for students 
to continue using the concepts and skills than other teachers did using the same 
textbook. It might be true that this teacher’s students were exceptional in some 
way and did not need the same level of practice as students in other classes. But 
in a school or district, if significant differences in achievement were noted among 
students in different classes, a closer look at opportunities to engage with the 
concepts might be considered.
	 The results from these algebra teachers can be investigated in a slightly dif-
ferent manner. In only two chapters, 1 and 4, did all the teachers teach all lessons. 
So an investigation of the questions assigned in lessons taught by all teachers 
might highlight differences in philosophies or interpretations of the materials.
	 The questions in each lesson in the UCSMP secondary school materials are 
grouped into the following four types:

•	 Covering the ideas questions address the core mathematics of the les-
son. Students who successfully complete these questions understand 
the essential ideas of the lesson.

•	 Applying the mathematics questions use the core mathematics in new 
contexts or in new ways not explicitly demonstrated in the lesson. 
These questions are intended to deepen students’ understanding of the 
mathematics more than the covering-the-ideas questions.

Table 17.3 
Percent of Questions Assigned by Teachers of Field-Trial Version of UCSMP  
Algebra, Third Edition, Based Only on Lessons Taught 

 
 

Teacher

 
Number of Questions  

Assigned

Number of Possible 
Questions in Lessons 

Taught

 
 

%

A 963 963 100

B 359 431 83

C 795 846 94

D 982 1135 87

E 887 931 95

F 313 656 48
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•	 Review questions give students an opportunity to continue develop-
ing their understanding of mathematics presented in earlier lessons or 
chapters. Such distributed practice is an effective means for students 
to build proficiency. Although students may have struggled with a con-
cept during the initial lesson, after discussion of homework or seeing 
connections to related concepts, they can often apply those concepts. 
Thus using review questions is a crucial component of implementing 
the UCSMP curriculum. 

•	 Exploration questions extend the mathematics concepts in an explor-
atory manner for students who need an additional challenge. These are 
the only problems that are not expected to be assigned on a daily basis.

	 Table 17.4 reports the percent of questions assigned from each of the first 
three types of questions from a set of lessons in UCSMP Algebra taught by all 
six teachers—the lessons of chapter 4. With the exception of Teacher F, teachers 
assigned at least 90 percent of the covering-the-ideas questions, thus ensuring 
that students had an opportunity to engage with the core mathematics of the les-
son. Three of the teachers assigned all the applying-the-mathematics questions, 
and two assigned about three-fourths of them, but Teacher F assigned fewer than 
a fifth of these problems. Thus, Teacher F’s students had far fewer opportunities 
to apply the concepts of this chapter in new ways. Even more variation occurs in 
the assignment of review problems. Teacher F assigned none of these problems, 
so if her students did not master the content on the initial day of the lesson, they 
had fewer opportunities to engage with the mathematics at another time. Teachers 
B and D also offered fewer opportunities for review than recommended by the 
curriculum developers.

Table 17.4 
Percent of Covering the Ideas, Applying the Mathematics, and Review Questions 
Based Only on Lessons Taught in Chapter 4 by All Teachers of Field-Trial Version 
of UCSMP Algebra, Third Edition 

 
 

Teacher

Covering the  
Ideas 

(n = 59)

Applying the  
Mathematics  

(n = 34)

 
Review 
(n = 61)

A 100 100 89

B 93 76 62

C 92 100 89

D 98 71 66

E 98 100 95

F 56 18 0

Note: n = number of possible questions.
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	 As the results in tables 17.3 and 17.4 illustrate, teachers who are teaching 
from the same curriculum materials can have very different expectations for stu-
dents, even when they teach the same lessons. As Hiebert and Grouws (2007, p. 
379) note,

The emphasis teachers place on different learning goals and different topics, 
the expectations for learning that they set, the time they allocate for particular 
topics, the kinds of tasks they pose … all are part of teaching and all influence 
the opportunities students have to learn. 

Myth 4: Teachers of the Same 
Mathematics Course Have the Same 
Expectations for How Their Content 
Coverage Prepares Students for 
Standardized Tests
	 Many educators and policymakers support the use of standardized tests be-
cause they believe that such tests eliminate bias in the design of the test. However, 
even when teachers are teaching from the same curriculum materials, differences 
in teachers’ coverage of content may unwittingly create bias for or against their 
students.
	 When posttests are administered at the end of a school year as part of 
UCSMP evaluation studies, teachers are asked to complete an opportunity-to-
learn (OTL) form on which they indicate, for each item, whether they taught 
the content needed for their students to answer the item. For instance, as figure 
17.4 indicates, for only sixteen of the thirty-two items (50%) on the TerraNova 
Algebra Test (a standardized test developed by CTB/McGraw-Hill [2001]) did 
all six UCSMP algebra teachers indicate teaching the content needed to answer 
the item. If Teacher F is omitted from this analysis, still for only twenty of 
the thirty-two items (62.5%) did all teachers report teaching the content. So 
a standardized test may not be an appropriate measure of the expectations for 
students who have taken the same course—in this instance, first-year algebra.
	 We often describe variation in classroom instruction in two distinct ways on 
the basis of teachers’ responses on the OTL forms. First, at each school where we 
have a pair of teachers, we note those items on which both teachers at the school 
reported teaching the content. Second, we look across teachers participating in 
the study, regardless of the curriculum being used, and identify those items on 
which all teachers reported teaching the content.
	 Variation in OTL on standardized tests within schools is often striking. For 
instance, in one school in which one teacher used UCSMP Algebra and another 
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used a non-UCSMP comparison curriculum, both teachers agreed about content 
coverage on only 62 percent of items on the Terra Nova Algebra Test. So even 
when students are taking the same course in the same school and eventually go-
ing to the same subsequent course, their opportunities to learn are not necessarily 
the same.
	 As reported elsewhere, we have found variability in opportunity to learn 
the mathematics on posttests both over time and over course level (Thompson et 
al. 2001, 2003; Thompson and Senk 2006). Table 17.5 reports results from this 
analysis of commonality on the OTL on the standardized tests used in field trials 
for four courses over more than a decade.
	 As the results in table 17.5 suggest, at the school level, for a given course 
little agreement (50%) or complete agreement (100%) may be found about op-
portunities to learn particular mathematics content. However, across all courses, 
all teachers in a study agreed on having taught the content needed to answer less 
than half the items on these standardized tests. In other words, even in studies 
involving fewer than fifteen teachers, little agreement is found among teachers 
about the expectations for middle and high school mathematics courses.
	 One can assume that when teachers develop assessments for their own 
class, they generally assess only content that they have taught. But when as-
sessments are created at a level beyond the classroom teacher (e.g., on standard-
ized tests or state-administered examinations), information about the extent to 
which students have had an opportunity to learn the content of the assessment 
is needed before drawing conclusions with policy implications. Even when stu-
dents are enrolled in courses that might be perceived as conventional in content 

Fig. 17.4. Items on the TerraNova Algebra Test for which content  
was reported as taught by teachers using the field-trial version  

of UCSMP Algebra, Third Edition. (A gray box indicates the  
teacher reported teaching the content  

needed to answer the item.)
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(i.e., first-year algebra, geometry, second-year algebra), the results cited in this 
section suggest that considerable variability exists in topics studied.

Conclusion and Discussion
	 In this article, we have cited data that debunk four myths about curriculum 
that some educators and policymakers may believe. In particular, we have shown 
that most teachers do not teach all topics in their textbooks; even teachers using 
the same textbook often teach different lessons; and even when the same lessons 
are taught, the questions assigned for homework may be quite different. Further, 
the variation in curriculum implementation noted for courses typically taught in 

Table 17.5 
Variability in Opportunity to Learn the Mathematics on Standardized Tests by 
Course

Pre- 
Transition 

Mathematics

 
Transition 

Mathematics

 
 

Algebra

 
 

Geometry

Year of Data  
Collection

2006–2007 2005–2006 2005–2006 1993–1994

    Number of teachers 14 10 9 8

    Number of schools 9 4 5 4

Name of  
standardized  
test

TerraNova 
CAT Survey 
Mathematics, 

Level 17

Iowa Algebra 
Aptitude Test

TerraNova 
Algebra

Test

High School 
Subjects Test: 

Geometry

Number of items  
on test

32 40 32 40

Percent of items  
common to both  
UCSMP and  
comparison teachers 
in the same school

50% – 97%  68% – 100% 62% – 100%  65% – 80%

Percent of items  
common to all  
teachers in the study 
across schools

34% 40% 48%  48%

Note: Based on Thompson et al. (2001, 2003) and Thompson and Senk (2006).
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grades 7–10 results in striking differences in how teachers respond to whether 
they think their curriculum has prepared students to answer questions on stan-
dardized tests.
	 Attempts to mandate a curriculum may be made by district or state offi-
cials or other policymakers, but the results discussed here suggest that detailed 
information about what happens at the classroom level is crucially important. 
Teachers use curriculum materials in many ways on the basis of various contex-
tual (e.g., instructional time or state and district frameworks) and personal (e.g., 
their perceptions of the needs of their students, or their own understanding of the 
mathematics in the materials) factors (Stein, Remillard, and Smith 2007). When 
teachers do not teach some portion of a textbook or choose not to assign specific 
problems, one cannot be sure why without asking each teacher.
	 Such variability is not necessarily bad or inappropriate. Teachers need to be 
sensitive to the needs of their students and the values and learning expectations 
in a local community. A given curriculum may be effective in different circum-
stances with appropriate modifications. We suggest that the failure to acknowl-
edge this variability in implementation is potentially problematic. For instance, 
because even in the same school teachers may vary in the percent of a textbook 
they teach, it is crucial that teachers of each course clearly articulate to teach-
ers of the following course what material was and was not studied. Similarly, 
teachers of the subsequent course also have an obligation to explain to those 
teaching the preceding course why certain content is fundamental to success in 
the subsequent course. In other words, the variability that occurs in curriculum 
implementation necessitates articulation across the grades and courses in middle 
and high schools.
	 In the current climate of educational accountability, too often the use and ef-
fectiveness of a curriculum are discussed solely with regard to achievement. The 
data in this article suggest that failure to consider the implemented curriculum 
makes it difficult, if not impossible, to make valid judgments about the assessed 
curriculum. Many policymakers at the federal level argue for experimental de-
signs in research on curriculum evaluation and accept primarily standardized 
assessments as acceptable measures of achievement (see, e.g., reports by Slavin 
[2008]). The data shared here suggest that even standardized measures may not 
be appropriate without information about implementation.
	 Collecting information about the fidelity of implementation is often diffi-
cult. Having observers in classrooms for an extended period of time is costly 
and labor intensive. The surveys we have used provide a relatively inexpensive 
way to obtain detailed information about curriculum implementation. Yet they 
can be burdensome at times for teachers to complete. Researchers need to con-
tinue discussions about low-cost, informative ways to solicit information about 
curriculum implementation that are reliable and do not require much inference 
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on the part of researchers. They should also not place unreasonable demands on 
teachers and their time. We hope that the types of data and the displays we have 
used in this article contribute to that discussion.
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Technology and the Teaching  
of Mathematics

Richard M. Hollenbeck 
Jonathan A. Wray 
James T. Fey

The power and versatility of a wide array of sophisticated electronic tools 
available for teaching and doing mathematics have transformed ways that 

we can engage students in exploring mathematical ideas and solving mathemati-
cal problems. These tools also challenge us to reconsider what mathematics is 
emphasized in classrooms (see Fey, Hollenbeck, and Wray elsewhere in this 
volume). From computer tutors, virtual manipulatives, and SMART Boards to 
e-books, simulation applets, and computer-adaptive testing, we have access to 
teaching tools that were hard to imagine in the chalk-and-talk era of only a few 
decades ago.
	 What you learn depends in important ways on how you are taught, and when 
electronic information technologies are applied to the tasks of teaching, they 
provide intriguing opportunities for transforming the mathematics learning expe-
rience. Used as a regular component in mathematics instruction, the responsible 
use of technology can stimulate students’ interest and enhance students’ learning 
(National Council of Teachers of Mathematics [NCTM] 2000).
	 The core mathematical content of the grades K–12 curriculum is drawn from 
the geometry and measurement, arithmetic, data analysis and probability, analy-
sis, and discrete mathematics strands of the discipline. Very attractive tools now 
exist for developing important ideas in each of those strands. As new technolo-
gies constantly arrive, the challenge for educators is to create innovative ways to 
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use technology effectively in teaching and learning mathematics. In this article, 
we use a variety of examples to illustrate how technology can be used to enhance 
mathematics learning and support effective teaching. Our objective is to help 
teachers understand how available technology can be incorporated as an integral 
component of instruction.

Geometry and Measurement
	 Imagine that the objective for a lesson is to develop students’ understand-
ing of the geometric principle that the area of any triangle can be calculated by 
using the formula A = (1/2)bh. With that goal in mind, present students with the 
task of finding the largest triangle that can be drawn inside a given rectangle. In 
time, students will come up with a variety of approaches for solving the problem. 
They may construct physical models, draw pictures, or arrive at some analytical 
method for making sense of the task.
	 After students discuss their initial ideas, they can be directed to a variety of 
computer applets for additional exploration or reinforcement of their conjectures. 
For example, the National Library of Virtual Manipulatives (http://nlvm.usu.edu) 
has an electronic geoboard that students can use to generate many examples of 
triangles enclosed within a given rectangle (see fig. 18.1).
	 This exploratory work can reveal or confirm the principle that for each rect-
angular configuration, the area of the largest enclosed triangle is equal to half  
the area of the original rectangle. Students can then explore the same question 
with a different applet available on the Illuminations Web site of NCTM (http://
illuminations.nctm.org/ActivityDetail.aspx?ID=108). This applet allows stu-
dents to slide one vertex of the triangle along a line parallel to the opposite side. 
They will quickly notice that the triangle shape changes, but base, height, and 
area do not.
	 Through combining visual images and numerical area calculations from the 
two applets with some analytic reasoning about the case of right triangles in a 
rectangle, students are likely to develop a solid understanding of the familiar area 
formula. At least for the case of triangles with one side along the length or width 
of the rectangle, they will find the area of the largest inscribed triangle.
	 Although physical geoboards could be used, virtual manipulatives have ad-
vantages that warrant their use. Classroom instructional time is not needed for re-
trieval, cleanup, storage, or maintenance. Web-based manipulatives offer visually 
appealing graphics that provide opportunities to highlight important relations, 
capture screen images, and even print students’ work. Many virtual manipula-
tives include interactive tools, such as the capacity to measure lengths and areas, 
offering information not accessible with physical models. The power of these 
and other computer-based manipulatives lies in the way they furnish exploratory 
environments that give immediate feedback about consequences of mathemati-
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cal operations. Furthermore, as access to computing becomes more and more 
ubiquitous, such virtual manipulatives will be available whenever and wherever 
students might need them.
 A natural extension of the foregoing activity to the secondary school level 
might be to challenge students to fi nd the area of an arbitrary triangle given the 
coordinates of its vertices in the (x, y) plane. Consider the following task:

A virtual geoboard used to investigate areas 
of triangles

A computer applet to investigate how changes in the 
base and height of triangles affect their area

Fig. 18.1
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Find the area of a triangle whose vertices are A(3, 1), B(12, 0), and 
C(9, 5).

	 For students who have thought only of finding areas for triangles with their 
base on a horizontal line, this is likely to be a challenging task. By combining an 
exploration with an interactive geometry software tool such as The Geometer’s 
Sketchpad with their earlier experience of bounding a triangle, students can be 
expected to arrive at strategies to find the area of an arbitrary triangle set in 
the coordinate plane. For example, after bounding a triangle with a rectangle, a 
student may use a dissection strategy to find the area of the desired triangle by 
decomposing three triangular areas from the area of the rectangle, or a student 
could apply the construction and measuring tools of the interactive geometry 
software tool to find the area of a rectangle whose width or length contains an 
edge of the triangle (see fig. 18.2).
	 Merely using technology to arrive at a solution gives no guarantee that the 
learning of a broader principle will occur. The challenge for mathematics educa-
tors is to find appropriate ways to use tools, such as interactive geometry soft-
ware, to enhance the curriculum. A student who simply finds the area of the 
triangle by using the area measurement command is not as likely to have the 
same learning opportunities as a student who understands one of the foregoing 
strategies for solving the problem.

Number and Arithmetic
	 Concepts and reasoning about number relationships and arithmetic are at the 
heart of almost every branch of mathematics and every application to mathemati-
cal reasoning and problem solving. As a result, devices that assist in arithmetic 
computation have been important tools of mathematical work and learning for 
millennia.
	 At the elementary school level, for example, early childhood students can 
begin to explore the relationships among numbers and develop mental com-
putational skills using five- and ten-frames. The electronic ten-frame (http:// 
illuminations.nctm.org) helps children focus on the relationships among numbers 
up to and beyond ten (see fig. 18.3). The frame serves as an anchor for numbers 
and helps students explore methods for subitizing “building” numbers, for deter-
mining how many more are needed to build a number, for practicing identifying 
quantities, and for adding or subtracting numbers.
	 Proportional reasoning is a core subject in the number strand of middle- 
grades mathematics. The importance of ratios and proportions is enhanced by 
their use in reasoning about similarity of geometric shapes. This visual represen-
tation of proportionality in such subjects as digital photography and computer 
graphics provides engaging contexts for students’ exploration.
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	 For example, imagine presenting a digital photograph of the Washington 
Monument and posing the following task: 

Construction of the Washington Monument started in 1848. In 1858, 
when the monument was 152 feet high, construction was stopped 
because of a lack of money and the onset of the Civil War. When the 
work resumed in 1879, builders had to use a slightly darker-colored 

A dissection strategy for finding the area of  
a triangle

Finding half the area of a rectangle whose length contains 
an edge of the triangle

Fig. 18.2
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marble block to finish the monument. How high is the Washington 
Monument?

	 Students will probably have intuitive ideas about ways to use the known 
height in 1879 to calculate the height of the finished monument. Then virtual 
rulers can be used to measure object lengths in pixels, centimeters, or inches (see 
fig.18.4). Repeating the measurement with several different units of length will 
reveal the invariant ratio of the two heights. Photo-editing software allows for 
easy enlargement or reduction of a picture. If the two heights are measured after 
each size-change operation, a scatter plot of the measurement pairs will reveal 
a linear pattern. A spreadsheet, graphing calculator, or computer line-of-best-fit 
routine will show how to model that pattern with a linear function in the form y = 
mx. This function expresses the proportionality relationship in an algebraic form 
that can be used to answer in a new way the original question about the height of 
the finished monument.

Algebra 
	 Interest in building appropriate readiness for the study of algebra has led to 
increased focus on development of algebraic thinking and algebraic reasoning 
skills as early as prekindergarten. For example, in the primary school mathe

Fig. 18.3. A computer applet that helps children explore basic 
number facts
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matics classroom, children can use the Color 
Patterns virtual manipulative (http://nlvm
.usu.edu) to describe a color pattern, extend 
a pattern, check their solution(s), and gener-
ate their own patterns (see fi g. 18.5). Students 
should be encouraged to use their own words 
to describe the patterns displayed and extend 
the patterns by dragging the appropriate col-
ors to the circled question marks. Afterward, 
children can use the Spotting Numbers Prob-
lem applet (http://www.fi .uu.nl/toepassingen/
00299/toepassing_wisweb.en.html ) to exam-
ine patterns and make and verify predictions.
 Almost every secondary-school-level 
mathematics curriculum aims to develop 
students’ understanding and skill in the use 
of algebraic equations and expressions to 
represent and reason about variables and re-
lationships. Manipulating equations and ex-
pressions into alternative equivalent forms 
often leads to solutions for problems and 
insight into relationships. Computer simula-
tions and calculation tools can help students 
develop understanding of the concepts and 
skills involved in those processes.
 For example, one of the most effective 
ways of thinking and teaching about equa-
tions and inequalities is by analogy to the op-
eration of a simple pan balance. Live demon-
stration with a real pan balance might be the 
best start on use of this analogy for equation 
solving, particularly for younger children. 
But exploration with a computer simulation 
can lead students to discover the operating principles that produce equivalent but 
simpler equations. Given a virtual pan balance in an applet (http://nlvm.usu.edu), 
students can move unknown and numeric “weights” to see which “moves” retain 
balance and lead to a picture revealing the value of x (see fi g. 18.6).
 When students are comfortable with the basic concept of solving equations 
and have developed some informal sense of strategy, teachers can focus on de-
veloping more general and effi cient use of solving operations. Here, different 
computer tools can be helpful. In most computer algebra systems (CAS), once 

Fig. 18.4. Using a virtual ruler 
to measure the height of the 

Washington Monument
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an equation is entered, it is easy to perform an operation on both sides. The CAS 
accurately executes the directions that are given, often showing a result that is 
different from what students expect. For example, when beginning students are 
asked to solve an equation such as 5x + 3 = 18 for x, they often try moves like “di-

A tool that allows children to extend  
patterns

Spotting Numbers Problem computer applet

Fig. 18.5
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vide by 5” or “subtract 4x.” Of course, the CAS will show the unhelpful results 
of those moves:

Divide by 5:    

Subtract 4 : 

5 3 18
5

5 3
5

18
5

x x18x x18 5 3x x5 3x x5 3x x5 3

xact 4xact 4

+ =5 3+ =5 3+ =x x+ =x x5 3x x5 3+ =5 3x x5 3
→

+5 3+5 3
=

( )5 3( )5 3( )( )18( ) 4 3  4 3  18 4x x( )x x( )( )18( )x x( )18( ) 4 3x x4 3( )x x( )( )5 3( )x x( )5 3( ) x x–x x–18x x18 4x x4x x4 3x x4 3( )+ =( )( )5 3( )+ =( )5 3( )( )+ =( )( )x x( )+ =( )x x( )( )5 3( )x x( )5 3( )+ =( )5 3( )x x( )5 3( ) 4 3− →4 3x x− →x x4 3x x4 3− →4 3x x4 3+ =4 3+ =4 3+ =x x+ =x x4 3x x4 3+ =4 3x x4 3

Research has shown that when students explore solving moves with feedback 
like what the CAS gives, they quickly develop the understandings and strategic 
skills that are desirable goals of instruction on this fundamental topic (Guin and 
Trouche 1999).

Connections
 One of the most valuable contributions of computers to mathematical work 
is in promoting multiple representations of data and relationships and connec-
tions of topics from different strands of the discipline. The following example 
shows how different computing tools can help students encounter the number e 
from a new perspective based in probability. Consider the following question:

To help students see alternative approaches to an assignment, a teacher 
distributed n papers to n students at random. What is the probability 
that no student receives his or her own paper?

 For most students, the fi rst step toward solving this problem would be to 

Fig. 18.6. A virtual pan balance
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generate and inspect lists of all possible arrangements in simple instances when 
n is small. The desired probability would be the ratio of the number of possible 
outcomes in which no student obtained his or her own paper (what might be 
called derangements) to the number of possible arrangements.
	 It is likely that students will quickly recognize the limitation of such a strat-
egy for values of n as small as five. Although many students will realize that n! 
gives the number of possible outcomes from distributing n papers, determining 
the number of derangements is a less accessible task. A computer applet avail-
able from http://theory.cs.uvic.ca/root.html lists the derangements for n up to six. 
Ultimately, formulas for the number of arrangements and derangements, not ex-
haustive lists, are required for computing the probabilities. But reasoning about 
the situation is likely to lead to a recursive process for generating successive 
counts of derangements rather than a closed form rule. If d(n) is the number of 
derangements in ordering of n objects, then 

d(n) = (n – 1)[d(n – 1) + d(n – 2)].

The calculation of values for d(n) from such a recursive formula and the ratio 
d(n)/n! is easy with such tools as calculators or computer spreadsheets (see fig. 
18.7). If students are directed to add a column showing reciprocals of the de-
rangement probabilities to their calculator table or spreadsheet, they will notice 
a surprising pattern—those reciprocals quickly converge to a highly accurate 
decimal approximation of e. So in addition to revealing a surprising result in 
probability, this technology-enabled exploration should pique students’ curios-
ity about yet another amazing connection of topics from very different parts of 
mathematics.

Fig. 18.7. A spreadsheet that shows convergence to e
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Conclusions
	 It is essential for educators to find ways to incorporate the calculating, com-
puting, and communication power of digital-age electronic technologies into 
mathematics instruction. Technology engages students in the exploration of im-
portant mathematical ideas and expands the range of problems that students can 
solve. It supports the development of students’ intuition about mathematical con-
cepts and enhances their understanding of fundamental concepts.
	 At the same time, technology is not a panacea (NCTM 2000). Teachers need 
to carefully select and design learning opportunities for students where technol-
ogy is an essential component in developing students’ understanding, not where 
it is simply an appealing alternative to traditional instructional routines. To maxi-
mize the power of technology, teachers need access to resources and profession-
al development opportunities to acquire a well-developed knowledge base for 
teaching with technology. They also need to learn about new roles for teachers 
and students in a technologically rich environment.
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Understanding Teachers’ 
Strategies for Supplementing 
Textbooks

Corey Drake

Research in the past several years has examined the ways in which teachers 
use mathematics curriculum materials, including the ways in which teach-

ers’ uses of curriculum materials match (or not) the intent of designers (Remillard 
2005), the range of ways in which multiple teachers might use the same set of cur-
riculum materials (e.g., Remillard and Bryans 2004; Sherin and Drake 2009), and 
the impact of the use of these materials on students’ achievement (Stein, Remillard, 
and Smith 2007). Several researchers (e.g., Collopy 2003; Remillard and Bryans, 
2004; Sherin and Drake 2009) have found that teachers do not simply choose to use 
or ignore curriculum materials; instead, teachers make adaptations to various com-
ponents of curriculum materials before, during, and after instruction. This finding 
suggests that the issue is not just one of fidelity—or accuracy—in implementa-
tion but that it also is about understanding the ways in which teachers make sense 
of, and interact with, new curriculum materials (Remillard 2005). Little research, 
however, has focused on the ways in which teachers supplement new textbooks 
with other resources for instruction. This is an important process for understanding 
how teachers use mathematics textbooks. These supplements include those that 
were part of teachers’ instructional practices prior to the introduction of new text-
books, as well as those teachers continue to acquire and use following the adoption 
of new textbooks.1

1. Although most recent research has focused on teachers’ use of NSF-funded curriculum 
materials, the same strategies for supplementing materials can be and have been used by 
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	 This article examines teachers’ strategies for supplementing textbooks by 
drawing on several different data sources and addressing the following three 
questions:

1.	 Why do teachers supplement their primary textbooks with other re-
sources for instruction?

2.	 What kinds of resources do teachers choose to supplement their pri-
mary textbooks?

3.	 What strategies do teachers enact for using multiple instructional re-
sources in coherent ways?

To answer these questions, I use accounts previously published in research 
journals, newspaper articles, and curriculum Web sites regarding teachers who 
supplement their district-adopted textbook with other curriculum materials. I 
then describe some of my own research data related to early elementary school 
teachers’ perspectives on supplementing curriculum materials. Drawing on these 
multiple sources of information, I conclude with a proposed framework for un-
derstanding teachers’ strategies for supplementing textbooks, implications for 
teachers and district leaders, and some questions for future research.

Examples of Teachers Supplementing 
Curriculum Materials
	 In developing a framework to characterize teachers’ strategies for supple-
menting curriculum materials, I turned to the research literature for prior ac-
counts of teachers’ interactions with, and decisions about, curriculum materials. 
Although these articles were not focused on supplementing, the descriptions of 
teachers’ uses of curriculum materials offer frequent examples of strategies for 
supplementing textbooks. Some of these examples focus on the ways in which 
teachers supplemented new National Science Foundation (NSF)-funded materials 
(adopted by their school or district) with materials they used previously, whereas 
others focused on how teachers used NSF-funded materials to supplement their 
use of non-NSF-funded textbooks. For example, Lloyd (2007, pp. 338–39) de-
scribes the curriculum strategies of a preservice teacher:

For the design of most of her mathematics lessons, Bridget used worksheets 
and pages from the students’… workbook in conjunction with numerous 
other activities that she developed or found from other sources.… As Bridget 

teachers using publisher-generated textbooks. Therefore, in the remainder of this article, 
teachers’ strategies for supplementing textbooks are discussed more generally, although 
many of the examples are drawn from cases involving the use of NSF-funded curriculum 
materials.
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explained, “The truth is, I am trying to use what they’re giving me and add to 
it where I think it’s lacking” (Int. 1, 3/2/04). Typically, Bridget’s “own stuff ” 
extended workbook lessons to allow students to “move around” (Int. 2, 3/5/04) 
and use physical materials or manipulatives.

	 Although Lloyd (2007) focused on a novice teacher, Remillard and Bryans 
(2004) investigated the curriculum practices of experienced teachers. For instance, 
they provide a quote from Zoe Kitcher, a twenty-five-year veteran, who describes 
her approach to supplementing curriculum materials:

When asked what resources she used, Kitcher explained that she used Inves-
tigations as her primary, but not sole, resource and was surprised to find an 
overlap between it and a resource she had used previously:

I’m using Investigations and … before we got Investigations I was using 
Used Numbers and doing some of those activities. I didn’t know that some 
of those activities were actually in the Investigations book. That’s fine. 
Sometimes I’ll pick just from my memory one of the games from Marilyn 
Burns and do something like that (p. 368).

Remillard and Bryans then cite a quote from a second veteran teacher, Kim  
Reston, with a different approach to supplementing curriculum materials:

I use a lot of Math Their Way … and I use that pretty systematically to go 
through numbers, but then it has been very useful to supplement it with some 
of the worksheets and some of the activities that are in Investigations … (p. 
373).

	 Finally, Martin and Ambrose (2007) describe two teachers teaching the same 
grade in the same school with the same textbook and the same curriculum man-
dates. Each chose to supplement the textbook with other instructional materi-
als, but for different reasons—one to prepare students for standardized tests, the 
other to support her students’ conceptual understanding:

You know, it all revolves around the [state] test, and getting their good grades 
for the [state] test, so we’re practicing…. Usually the textbook is way over 
their head. And I want something that is basic, that doesn’t have all this other 
stuff in it (p. 831).

I think you can teach them the pattern of the algorithm, which is what I’ve 
been told to do by my boss, but I think that unless they start understanding 
what the numbers mean, that it’s a crapshoot, they’re going to forget it…. So I 
won’t use any of those pages … (p. 832).

Thus, previously published research gives examples of teachers who supple-
ment curriculum materials to address standards or standardized tests, to provide 
more concrete or conceptual experiences for students, and to use familiar ac-
tivities from materials they have used in the past. Some supplement NSF-funded  
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curriculum materials with more traditional materials, whereas others supplement 
more traditional materials with NSF-funded curriculum materials.
	 Although some past or current curriculum developers or publishers may 
have discouraged teachers from using curriculum materials from multiple sourc-
es, many publishers now produce multiple sets of curriculum materials and even 
provide their own guidelines for helping teachers supplement one set of materials 
with another. At the same time, publishers of mathematics materials now com-
monly offer information for teachers suggesting ways to integrate their materials 
with more widely adopted NSF-funded materials, including Everyday Mathemat-
ics and Investigations. For instance, the Contexts for Learning Mathematics se-
ries developed by Fosnot and colleagues (Fosnot 2007) uses “crosswalks” (http://
www.contextsforlearning.com/corrCrosswalks.asp), suggesting how their mate-
rials can either replace or supplement elements of both NSF-funded and more 
traditional textbooks. In a sense, this strategy is similar to the use of “replace-
ment units” that were developed and commonly used in the 1980s and 1990s. 
However, they do differ in that, with these newer materials, supplementation oc-
curs not only at the level of units but also at the level of lessons and specific 
activities. Furthermore, the newer guidelines attempt to furnish some conceptual 
or mathematical coherence across the use of various materials, suggesting that it 
is possible to build a single coherent curriculum through the use of multiple sets 
of curriculum materials.
	 Another example of curriculum supplementation comes from an article in 
the Seattle Post-Intelligencer (Blanchard 2007). The article described an interest-
ing compromise that had been reached by the district school board to adopt both 
an NSF-funded curriculum series (Everyday Mathematics) and a seemingly more 
traditional and publisher-generated curriculum series (Singapore Math). Espe-
cially interesting about this instance is that, in describing the district’s decision, 
Blanchard also suggested that individual teachers had, over the years, developed 
their own strategies for supplementing curriculum materials, and that now the 
district was interested in adopting a districtwide approach to supplementation:

Lessons will now be taught using the conceptual “Everyday Math” books, 
which help students discover algorithms on their own and explore multiple 
ways to solve problems, and the more traditional “Singapore Math” books, 
which help hone students’ basic computation skills through repetition and 
problem solving. Teachers will follow the district’s guidelines for the order the 
lessons [will] be taught.

The move is the latest step toward the district’s goal of streamlining and stan-
dardizing the math curriculum. The district has two formally adopted math 
programs, but over the years, teachers have had the flexibility to create their 
own math lessons, culling bits from various other math programs they liked.
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This newspaper article supports the idea that teachers tend to develop their own 
strategies for using multiple sets of curriculum materials and suggests that dis-
tricts might now be interested in systematizing these strategies in hopes of achiev-
ing both consistency and some measure of control over teachers’ practices.

A Framework for Understanding 
Teachers’ Strategies  
for Supplementing Curriculum Materials
	 With these examples from prior research, publishers, and newspaper ac-
counts in mind, I turn to an analysis of two sets of interviews with elementary 
school teachers. The first set of interviews was conducted between 1998 and 
2000 with twenty teachers piloting a university-produced curriculum, Children’s 
Math Worlds (CMW), in the early elementary grades. These teachers were not 
asked directly about their strategies for supplementing the curriculum materials; 
however, their descriptions of these strategies became clear as we coded the data 
for evidence of teachers’ curriculum-use strategies. The second set of interviews 
was conducted in 2006 with nine teachers and leaders participating in profes-
sional development focused on Cognitively Guided Instruction (CGI) (Carpenter 
et al. 1999). These teachers were directly asked about their experiences supple-
menting their use of NSF-funded textbooks with what they had learned about 
CGI.2

	 In analyzing these two sets of interviews, the following four major catego-
ries of reasons teachers cited for supplementing curriculum materials with other 
resources were identified: (1) addressing the need for different kinds of activi-
ties (e.g., manipulatives, games, activities that seemed fun or motivating for stu-
dents), (2) addressing the needs of different groups of students (e.g., those strug-
gling or needing challenge, those needing additional motivation), (3) addressing 
the demands of standardized tests and other policy mandates, and (4) a desire to 
maintain the use of activities that had been successful in previous years. These 
categories are quite similar to those exemplified by the teachers in the studies of 
Martin and Ambrose (2007), Lloyd (2007), and Remillard and Bryans (2004) 
described in the foregoing. Examples of representative quotes corresponding to 
each of the four reasons are given in table 19.1.
	 Implicit, and sometimes explicit, in these stated reasons for supplementing 
curriculum materials is a broader desire on the part of teachers to have access 
to multiple activities, representations, and approaches for teaching a particular 

2. Because the teachers and leaders worked in a variety of schools and districts, they 
worked with different sets of NSF-funded materials, including Mathematics Trailblazers 
and Everyday Mathematics. 
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topic, to not feel constrained in using a single set of materials rigidly, and to be 
supported in making the kinds of curriculum decisions, based on students’ learn-
ing needs, that are crucial to the profession of teaching. One teacher summarized 
as follows:

… it’s a problem with any kind of program. You have to modify it for what is 
your present needs … that’s why we had to move away from it at times and not 
do it because it just doesn’t fit … it’s all a matter of adapting. (CMW Teacher)

Reason Quote

Different kinds of  
activities

“… instead of doing the count-bys with them, I bought a 
multiplication tape—a rap tape—and they learned from 
there. So, I kind of changed it in that way for them to get 
their attention and get them to want to keep up with the 
tape. Because I found the count-bys, they would try, but 
they weren’t putting their heart into it. So I got that and 
a multiplication bingo game to get their focus back in on 
that.”  (CMW Teacher)

Needs of different 
groups of students 

“I think it [the curriculum] leaves room, if a teacher is 
willing to not use it as the Bible and bring in their own 
stuff, you can extend for high-level kids from this.” 
(CMW Teacher)
“… we’re using it [CGI] as additional instruction. So the 
kids who need a little more time on a concept, we use 
CGI for that … giving them a problem or two to have 
them work through and figure out.” (CGI Teacher)

Tests/policy mandates “… there were certain things that I didn’t get covered in 
the curriculum that they needed for the test… there was 
the measurement.” (CMW Teacher)
“I wouldn’t be brave enough to do that [teach CGI all 
day, every day] right out of the gate…. I’d have to do a 
lot of thinking about what I’m going to collect to show 
that their child actually is learning these curriculum 
standards and benchmarks that the district has said are 
important….” (CGI Teacher)

Maintain use of prior 
activities

“I think—just like I stuck away the scrolls and stuck 
away the 10’s and 1’s from [another curriculum], I think 
I’ll pretty much take labeled drawings with me no matter 
what I end up doing.” (CMW Teacher)

Table 19.1 
Representative Quotes Illustrating Teachers’ Reasons for Supplementing  
Curriculum Materials
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	 An analysis of the CGI interview data also suggested that teachers supple-
ment their primary textbooks with other instructional resources in one of three 
ways. First, they might replace elements of one resource with elements of an-
other. For instance, teachers talked about using CGI word problems to replace 
the problems in the textbook. Second, they might use two resources side-by-side, 
either with or without making explicit connections between the two resources. 
Teachers might use both resources because they address the same objective in 
different ways or because one addresses procedural understanding and the other 
addresses conceptual understanding or problem solving, as described by Martin 
and Ambrose (2007). Finally, CGI teachers often integrated CGI and NSF-fund-
ed textbooks by using CGI to reframe or reinterpret the textbook. In the words of 
two teacher leaders—

… it [CGI] is a way of looking at the problems [from the textbook]. When you 
look at the way kids are struggling with problems, you can look at the prob-
lems and say, “Well, no wonder they’re struggling with this one, because this is 
a join start unknown3 problem,” and so it allows us to deepen our understand-
ing of the program … it really helps us to deepen our implementation of the 
Standards-based program.

We tried to make almost every lesson last year a cognitively guided one by 
using what the book said you were supposed to get out of it but make it in a 
cognitively guided way. It was interesting and fun and more beneficial for the 
kids than the book was.

	 On the basis of these examples from my own data, as well as on the prior 
research and other examples cited above, the framework in figure 19.1 was de-
veloped to reflect the cyclic nature of teachers’ strategies for supplementing cur-
riculum materials.

Implications for Research and Practice
	 Figure 19.1 highlights four important aspects of teachers’ strategies for sup-
plementing curriculum materials, here framed in the questions teachers might 
ask themselves as they move through the framework:

•	 Reason
—	 Why do I need additional materials? 
—	 What purpose will they serve that my primary textbook is  

not serving?

3. Join start unknown problems are a story problem type in which the starting number is 
unknown (e.g., “Tommy had some cookies. Emma gave him 6 more cookies. Now Tommy 
has 11 cookies. How many cookies did Tommy have to start?” This problem type is iden-
tified by CGI research (Carpenter et al. 1999) as a difficult problem type for children, 
particularly children who are trying to model the problem situation.
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•	 Selection of Resources

—	 What materials or resources are available to meet this need?
—	 Do they address the same mathematical concepts as my pri-

mary textbook?
—	 How do they align, or fit, with my primary textbook and with 

district and state standards?

•	 Method and Duration

—	 Should I use the supplementary materials along with, or instead 
of, the primary textbook?

—	 Do the supplementary materials change the way I use the text-
book, or vice versa?

Reason for Supplementing
• Different Kinds of Activities
• Addressing Different Groups
 of Students
• Responding to Standardized
 Tests
• Maintaining Prior Activities

Assessment and Reflection
• Did the Supplementing Work?
• How Do I Know?

Selection of Resources
• What Is Available?
• How Do Available Resources
 Fit with Primary Resource?

Method and Duration
• Replace, Reframe, or Use
 Side by Side
• Supplement an Activity,
 Lesson, Set of Lessons,
 or Unit

Fig. 19.1. A framework for understanding teachers’ strategies for 
supplementing curriculum materials
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—	 Can I supplement with these materials in a way that maintains 
(or increases) the rigor, quality, coherence, and equity of my 
instruction?

—	 Would I supplement an activity, a lesson, or an entire unit?

•	 Assessment and Reflection

—	 How do I, or will I, know if my supplementing was successful 
or productive for students’ learning?

—	 How will I use the results of this lesson, or set of lessons, to 
guide my decisions about supplementing curriculum materials 
in the future?

	 The number and kinds of resources available for teaching mathematics are 
quite large; teachers have an almost unlimited variety of resources from which 
to choose and supplement. This article, along with figure 19.1 and the questions 
listed in the foregoing, offers some general guidelines and questions for teach-
ers to consider as they contemplate supplementing their primary textbook with 
one or more additional resources. However, teachers should also be cautious in 
choosing to supplement their primary textbook; in particular, it can be difficult 
and complex to ensure that multiple sets of instructional resources fit together in 
a way that gives students coherent mathematics instruction.
	 More research is needed to understand the extent to which teachers’ different 
approaches to supplementing textbooks lead to (a) more or less coherence in the 
instruction to students and (b) differences in students’ and teachers’ learning. At 
the same time, some might argue that supplementing curriculum materials is, in 
general, a less productive strategy than using a single, well-developed textbook 
with minimal replacement or supplementation of lessons. At the very least, it is 
clear that the practice of supplementing textbooks entails both the possibility of 
significant benefits, including the ability to design instruction to meet students’ 
particular needs and to teach concepts in multiple ways, as well as the potential 
for significant risk, particularly the danger of providing incoherent or repetitive 
mathematics instruction to students.
	 Currently, in a few districts, district leaders have chosen not to adopt a pri-
mary or single set of curriculum materials, and thus, teachers are responsible for 
identifying and using multiple sources of materials on a daily basis—in effect, 
designing their own set of mathematics curriculum materials (Drake 2009). In 
other districts, teachers have been instructed not to supplement their mathematics 
textbooks at all (Drake 2009; Stein and Coburn 2008). Finally, many districts are 
now recognizing that supplementing textbooks is an important aspect of teachers’ 
practices and are attempting to set up frameworks and guidance for teachers in 
this process. In each of these instances, little is known about the range of ways in 
which districts might guide teachers in their use of textbooks or the effectiveness 
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of these different guidance approaches in students’ learning and mathematical 
coherence.
	 Ultimately, as a field, we need a well-developed framework, building on fig-
ure 19.1, for understanding the practice of supplementing textbooks and outlin-
ing important decision points for teachers and leaders. This framework will be an 
important tool for helping preservice and in-service teachers, as well as district 
leaders, learn to make more informed, strategic, and coherent decisions about 
curriculum use and supplementation in ways that effectively meet the needs of 
all students.
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20

Teachers’ Perspectives on 
Fidelity of Implementation to 
Textbooks

Mary Ann Huntley 
Kathryn Chval

For many years, it has been common practice for teachers to use their mathe­
matics textbook as a starting point, supplementing from other resources to 

piece together a curriculum that they consider best meets their students’ needs. 
In fact, this type of practice has been encouraged by some teacher educators 
who suggest that “good teachers do not use textbooks and teacher’s guides, but 
develop their own curriculum instead” (Ball and Feiman-Nemser 1988, p. 402). 
However, many teachers are now hearing a different message, namely, that text­
books should be implemented faithfully to the authors’ intents, with minimal 
(if any) alterations from what is laid out in the teachers’ guides—that is, imple­
mented with high fidelity. To further support teachers using textbooks with high 
fidelity, some districts have initiated the use of “pacing guides,” articulating the 

Both authors express appreciation to the teachers from whom they collected data. Funding 
for the Delaware research project came from a National Academy of Education/Spencer 
Postdoctoral Fellowship Award and a grant from the University of Delaware Research 
Foundation. Funding for the Missouri research project (the Middle School Mathematics 
Study) was provided by a grant from the U.S. Department of Education (no. R303T010735) 
and the Center for the Study of Mathematics Curriculum (NSF award no. ESI-0333879). 
We gratefully acknowledge Professor Óscar Chávez’s assistance with compiling the data 
for the Missouri research project. The opinions in this article are solely those of the au­
thors and do not necessarily reflect the policy or position of the funding agencies.
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specific lessons that are to be taught each day, and have removed copies of old 
textbooks from classrooms to prevent teachers from using them. This message 
is dramatically different from that in years past, when teachers were expected to 
design creative lessons to augment their textbooks.
	 Although teachers are faced with this dramatic change in their expected role 
with regard to curriculum materials, they continue to receive a variety of mes­
sages—implicit, explicit, and some that are contradictory—about curriculum im­
plementation. For example, although it is recommended that teachers faithfully 
implement their district-adopted materials, the National Council of Teachers of 
Mathematics (NCTM) emphasizes that a basic tenet of effective mathematics 
teaching is that teachers know and understand deeply the mathematics they are 
teaching and are able to draw on that knowledge with flexibility during classroom 
instruction (NCTM 1991). So although on the one hand, teachers are told to 
implement instructional materials in a certain manner, on the other hand, NCTM 
encourages teachers to be flexible, which teachers may interpret to mean that 
they need to stray from their pacing guides. As a result, teachers have struggled 
to make sense of how to use curriculum materials effectively and to define their 
roles in making decisions about curriculum implementation.
	 Although “implementation fidelity” is not a new concept, conversation about 
it has increased in recent years as policymakers and district administrators want 
to know which mathematics curricula “work” (i.e., positively affect students’ 
achievement). Of course, valid evaluations of the effects of curriculum materials 
necessitate studying the effects of true implementation of that curriculum, yet not 
surprisingly, teachers continue to alter their district-adopted curriculum materials 
by changing the order, supplementing, or omitting portions of their curriculum 
materials (Chval et al. 2009). Unfortunately, a voice has been missing from these 
conversations about implementation fidelity. As researchers continue to think 
about, discuss, and study curriculum implementation, they need to consider the 
teachers’ perspective. In this article we present research findings about teachers’ 
views on altering curriculum materials and teachers’ beliefs about implementa­
tion fidelity, present a way for teachers and those who support their efforts to 
think about fidelity, and discuss implications for teachers and district leaders.

An Overview of the Research
	 The data reported here were collected from two separate middle-grades re­
search projects involving teachers in geographically diverse areas of the United 
States. One project, centered at the University of Delaware, was designed to study 
the implementation of three comprehensive middle-grades mathematics curricula 
developed with funding from the National Science Foundation (NSF)—Connect­
ed Mathematics (Lappan et al. 2002–2004), Mathematics in Context (National  
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Center for Research in Mathematical Sciences and Freudenthal Institute 1997–
1998), and Math Thematics (Billstein and Williamson 1999–2005). For this proj­
ect, data were collected from forty-one teachers; for purposes of this article we 
used data collected through one-on-one, tape-recorded interviews with each of the 
forty-one teachers, and data collected during a videotaped professional develop­
ment session with eleven of those forty-one teachers.
	 The other project, the Middle School Mathematics Study, was centered at 
the University of Missouri (Tarr et al. 2008). One purpose of this project was to 
understand how teachers use their district-adopted textbook and other curricular 
resources. Although data for the Middle School Mathematics Study were collect­
ed from teachers using a variety of textbook approaches (i.e., both NSF-funded 
textbooks and publisher-generated textbooks), for the purposes of this article we 
report only data from tape-recorded interviews with thirty-one teachers using 
publisher-generated textbooks (Glencoe, Saxon, Prentice Hall, Houghton Mifflin, 
Southwestern, Harcourt Brace, and Addison Wesley).

Teachers’ Voices
	 To understand how teachers use their assigned textbooks, teachers from 
both the Delaware and Missouri projects were asked about the extent to which, 
and ways in which, they use their textbook. In the sections that follow, we re­
port our findings regarding teachers’ views about altering a textbook’s sequence, 
omitting content, and supplementing with other materials. We first discuss the 
views of teachers using NSF-funded mathematics textbooks (teachers partici­
pating in the Delaware project), and then we discuss the views of teachers using 
publisher-developed textbooks (teachers participating in the Missouri project). 
Next we report data from just the Delaware project, in which teachers were asked 
about the extent of their agreement (or disagreement) with four statements re­
flecting different ways researchers view teacher-textbook interactions. Listening 
to teachers’ voices about why they diverge from their designated textbooks and 
their views about implementation fidelity provides a fresh perspective on these 
issues.

Teachers’ Perceptions of Changing a Textbook’s 
Sequence
	 Thirty-nine of the forty-one teachers using NSF-funded textbooks (95%) 
reported primarily going from one page to the next in order in sequential fash­
ion and not “skipping around.” They expressed two reasons for this approach. 
First, the most common reason they cited was the nature of NSF-funded curri­
cula. More specifically, they said that skipping around would not make sense and 
would be detrimental to students’ learning because the mathematical ideas build 
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on one another. As stated by Nancy, skipping around “provides opportunities for 
serious holes to happen.” Donna expressed this view as follows:

It’s the whole nature of the curriculum that you … start on this journey into a 
mathematical thought … if I want to go from Detroit to Miami, I’m not going to 
skip around to Denver in the process…. I’m going to go in a pretty direct line! 
So … the continuity is crucial—absolutely crucial. You cannot skip around.

	 The second reason teachers said they followed the order of their textbooks 
was because they respect the textbook authors’ judgments. For instance, Linda 
said, “I have a lot of respect for the knowledge and the way the program is writ­
ten and created, and their vision. So, for me … I step through it, and I don’t skip 
around.” This sentiment was expressed by Kim, as follows:

Oh, no! Don’t you dare do that [skip around]! Oh, my gosh! If you want to screw 
up everything, just jump around! ... It’s like trying to build a house and working 
on the floor, and then working on the roof, and then going down and working on 
the windows.… There’s some logic and some organization behind it!

	 Two teachers who use NSF-funded textbooks said they did not use them in 
sequential fashion. They indicated that in the past they did use their books in this 
way, but at present they do not, because changes to the state curriculum require­
ments now mandate mathematical content to be taught in a certain order that does 
not align with their adopted textbook (Math Thematics). Rebecca described this 
situation and her resulting frustration.

When we first started we went from front to back, and that worked out really 
nicely because, you know, with it being thematic it all worked together.… So 
that was really nice. But … the state changed up our curriculum and so now 
we can’t go in that order. Well, that causes a problem because it’s a theme. So, 
if you go on from unit 5, back to unit 1 and then to unit 3, well you can’t do … 
any of those projects that are provided in there because you haven’t completed 
any one topic.… It’s a spiraling curriculum and so, you know, if it’s covering 
decimals in that unit and we haven’t done decimals yet, then we can’t use that 
part of the lesson. So that’s been frustrating for us … because the questions in 
the book are so good, you know, and you want to be able to use them.

	 Teachers using publisher-generated textbooks also followed the expected or­
der in the majority of the cases. As articulated by John, “I do not jump around 
with these lessons. I use every lesson in order. Staying on track helps the students 
know where we are going and where we have been.” Another teacher, Bob, said,

With the spiraling, you have to follow it closely. In other books I have used 
before, you could skip chapter 8 and go to 12. But with Saxon you can’t skip 
around…. If you skip a set, then kids are into problems in the sets that they 
have not had, [and] you would have to eliminate those problems in your  
assignment.
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	 Thirty-five percent of the teachers using the publisher-generated textbooks 
stated that they did not follow the textbook sequentially, as articulated by Craig: 
“Regarding what I teach, the ideas in the text are the steppingstones for the chap­
ters. We rearrange a lot, switching the order and ignoring the sequence in the 
book.”
	 Cheri said, “You always skip around, because the text, although supposed to 
be set up in an orderly system, still isn’t the orderly system for you.”
	 The most common reason that teachers who used publisher-generated text­
books cited for not following their book’s order concerned demands of the state 
test. In other words, teachers wanted to make sure that certain mathematical con­
tent was presented prior to the state assessment. Other, less common reasons 
included that they do not like the book’s organization and their belief that their 
personal approach is more mathematically sound.
	 Bear in mind that our purpose is to report what we have learned from the 
teachers from whom we collected data. We acknowledge the fact that teachers 
using NSF-funded materials also face assessment pressures, a concern that was 
reported by the teachers in the Missouri study using commercially generated ma­
terials. Likewise, we acknowledge that the sample of teachers we interviewed did 
not identify all the reasons that others (e.g., Hix [2008]; Remillard [2005]) report 
for teachers’ supplementing, omitting, or changing the order of the lessons in 
their designated textbooks. Such additional reasons included a lack of clarity in 
the materials about the textbook authors’ intents, teachers’ beliefs and prior expe­
riences as students and preservice teachers, teachers’ mathematical knowledge or 
understanding of the pedagogy called for in the textbook, teachers’ comfort with 
the textbook, and the environment in which teachers work (e.g., state and district 
curriculum standards, testing requirements, students’ prior mathematical experi­
ences, parents’ expectations, and the availability of materials and supplies).

Teachers’ Perceptions of Omitting and 
Supplementing
	 Teachers reported a number of reasons for omitting material in their respec­
tive textbooks (see table 20.1). The most frequent response from teachers us­
ing both NSF-funded and publisher-generated materials was the lack of time. 
Other common reasons for omitting material by teachers using NSF-funded cur­
ricula included the perception that the content was redundant—or the content 
was optional—on the basis of what was laid out in district or state curriculum 
documents. Common reasons for omitting material expressed by teachers using 
publisher-generated curricula included the perception that students did not need 
to know the content or that other content was more important (e.g., problem solv­
ing is omitted because teachers believe students need to focus on skills).
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	 As with omitting material from their textbooks, teachers reported a number 
of reasons for supplementing the content in their respective textbooks with ma­
terial from other sources (see table 20.2). The most frequently cited reason re­
ported by teachers using NSF-funded materials was their perception that students 
needed more practice or reinforcement of ideas than their textbooks offered. The 
second most common reason for these teachers was the fact that they did not 
like the book’s presentation of specific content, or they merely wanted a greater 
variety in presentation than the book offered. The top reasons identified by the 

Table 20.1
Reasons Cited by Teachers for Omitting Textbook Material

 
 
 

Reasons Cited for Omitting Textbook  
Material

 
Percent of  

Teachers Using 
NSF-Funded  

Textbooks

Percent of 
Teachers Using  

Publisher- 
Generated  
Textbooks

The teacher perceives that insufficient time is  
available.

29 23

The teacher perceives that the problem is redundant. 20 3

The content is designated as optional per district or 
state curriculum.

17 0

The teacher perceives that the material is confusing 
to the students.

10 6

The teacher perceives that students already know the 
content.

10 6

The teacher perceives that students do not need to 
know the content or that other content is more  
important.

7 23

The content is designated as optional per the teach­
er’s guide.

7 0

The teacher perceives that the reading or writing 
load is too high for the students.

5 0

The teacher lacks access to needed equipment or 
materials.

5 3

The content is not on the high-stakes  
assessment.

5 6

The teacher is uncomfortable with the mathematical 
content, pedagogy, or problem context.

5 3

The teacher perceives that the mathematical content 
is flawed.

0 3

The teacher perceives that the book contains too 
much practice or review.

0 10

The teacher perceives that the book contains too 
much material.

0 3
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teachers using NSF-funded curricula were also prevalent for the teachers using 
publisher-generated textbooks. In addition, teachers using publisher-generated 
textbooks reported outside pressures as another common concern. These pres­
sures came in the form of state assessments, state or local curriculum standards 

Table 20.2
Reasons Cited by Teachers for Supplementing Textbook Material

 
 
 
 

Reasons Cited for Supplementing

 
Percent of  

Teachers using  
NSF-Funded  

Textbooks

Percent of  
Teachers using 

Publisher- 
Generated  
Textbooks

Teachers perceive that the book lacks or 
contains insufficient content/skills to meet 
students’ needs—

Practice/reinforcement 73 23

Scaffolding 12 0

Remediation 10 6

Extensions (more challenging content) 7 13

Probability and statistics 7 0

Algebra 5 0

Mental math 2 0

Area of a circle 2 0

Examples 0 6

Real-life applications 0 23

Higher-order-thinking skills 0 3

Problem solving 0 3

Unspecified student needs 0 16

Teachers perceive that they have a better way 
to present the specific content, or they want 
more variety in presentation of content.

37 52

Teachers perceive that a substitute teacher will 
find it easier to use a textbook with a more 
traditional approach.

12 0

Outside pressure (e.g., state test, state/district 
curriculum, high school teachers, parents)

12 42

Teachers perceive that the book is too wordy, 
too difficult for low readers..

5 6

Teachers perceive that the problems are not 
meaningful or relevant to students.

2 29
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(e.g., grade-level expectations), and requests from high school teachers as well as 
parents.

Teachers’ Perceptions of Teacher-Textbook 
Interactions
	 Teachers participating in the Delaware project were asked to indicate the ex­
tent to which they agreed or disagreed with four statements that reflect different 
ways that teachers interact with textbooks. The survey was based on a framework 
developed by Remillard (2005). The four questions were based on different ways 
that researchers conceptualize textbook use, which are grounded in different as­
sumptions about curriculum, teaching, and teacher-textbook interactions. During 
the interviews, teachers were encouraged to discuss the reasons for their choices. 
During a professional development meeting that took place shortly after the in­
terviews, teachers engaged in a dialogue about each of the four statements.
	 The survey questions, along with the teachers’ responses, are shown in table 
20.3. These data report only teachers using the NSF-funded curricula; we do 
not know how teachers using the publisher-generated programs would have re­
sponded to these items.
	 As indicated in table 20.3, teachers were nearly unanimous in their views on 
statement 1. Nearly all said they believe that teachers should implement their mathe­
matics curriculum (Connected Mathematics [(Lappan et al. 2002–2004], Math The­
matics [Billstein and Williamson 1999–2005] or Mathematics in Context [National  
Center for Research in Mathematical Sciences and Freudenthal Institute 1997–
1998]) as the developers of the materials intended. Teachers articulated two rea­
sons why they believe fidelity is possible and a goal of instruction. First, twelve 
teachers said their curriculum is research-based, and that they appreciate the 
work the authors put into developing the materials and trust that they “work.” 
Second, seven teachers said a lack of fidelity results in holes or gaps in students’ 
knowledge. Although most agreed that fidelity is possible and a goal of instruc­
tion, two teachers said it was possible only if teachers receive curriculum-specific 
professional development.
	 Table 20.3 also indicates that teachers agreed with statement 4—that the 
curriculum development process does not stop when textbooks are printed but 
continues as they teach. Kim agreed with this statement because she perceives 
herself to be a reflective practitioner, noting, “I think that the curriculum devel­
opment process never stops.… There’s always [the question] … How can I make 
this better?” Louise expressed this same view: “I mean, that is what teaching is. 
You continuously change curriculum, even from year to year—everything.”
	 Less consistency was found among teachers regarding their agreement or 
disagreement with statements 2 and 3. With statement 2, teachers’ views differed 
about whether curriculum materials are prescriptions for practice or about wheth­
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er curriculum materials are one of many resources they use for guidance about 
what and how to teach. Some teachers said they agreed only with part of state­
ment 2. For instance, Theresa said she did not agree with the second part of the 
statement: she believed that her NSF-funded textbook was the primary resource, 

Table 20.3
Percent of Responses from Teachers Using NSF-Funded Materials to Survey 
Items on Use of Mathematics Curriculum Materials

Disagree 
or Strongly 

Disagree

 
No 

Opinion

Agree or 
Strongly 

Agree

 
No  

Response

1.	 The goal is for teachers to 
implement their mathemat­
ics curriculum as intended 
by the developers of the 
materials. That is, fidelity of 
implementation is not only 
possible but also the goal of 
instruction.

7 0 85 7

2.	 Curriculum materials are not 
prescriptions for practice; 
rather, they are one of many 
resources teachers turn to 
for guidance about what 
content to teach and how to 
teach it.

41 2 54 2

3.	 Fidelity of implementation 
is not possible. Teachers 
interpret the intentions of 
curriculum developers and 
create their own meanings 
of curriculum on the basis of 
on their personal knowledge, 
beliefs, and experiences.

49 5 39 7

4.    The curriculum-develop­
ment process does not stop 
when textbooks are printed, 
but continues as teachers 
are in the classroom. During 
instruction teachers alter, 
adapt, and translate what 
is offered in curriculum 
materials in ways that make 
the materials appropriate for 
their particular students.

2 0 98 0
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not one of many resources she uses for guidance about what and how to teach. 
She strongly agreed, however, that curriculum materials are not prescriptions 
for practice, “because I don’t … want to feel like I’m constrained … I’m going 
to follow it, and I’m going to be faithful [up] to a point. But I don’t want to feel 
[constrained] … a prescription to me is very regimented, very scripted.”
	 Similarly, with statement 3, many teachers agreed with the second sen­
tence—that teachers interpret the intentions of curriculum developers. They 
did not, however, want to let go of their belief that implementation fidelity is 
possible. They also did not want their response to statement 1 to contradict their 
response to statement 3, which would indicate that fidelity is both possible and 
not possible. Donna articulated this tension by saying, “I can strongly agree 
that fidelity of implementation is the goal, but I can also strongly agree that it’s 
pretty difficult to achieve.” Below is a portion of the transcript from the pro­
fessional development session highlighting participants’ struggles with these 
issues.

Kelly:	 I don’t know. I’m torn between it [fidelity] may not be possible, 
but I still think it’s a goal.

Margaret:	 … I can disagree with both of those statements [statement 1 
and statement 3], because the goal is fidelity but the reality is 
it’s not possible! So I think you can disagree with one and three 
because, you know, that’s your goal, you’re shooting for that, 
but in the same breath you realize that you’re never really going 
to reach that because there’s just too many other variables.

Kelly:	 Well, you see, that’s what’s bothering me because … fidel­
ity and infidelity—like adultery, you’ve either done it or you 
haven’t. But, you know, there is no, like, sort of being faithful. 
Or sort of being unfaithful!

Margaret:	 Your goal could be fidelity, but then fidelity could be  
impossible.

Kelly:	 Does fidelity mean perfection?

	 This conversation between Kelly and Margaret highlights an important is­
sue. Kelly’s comment, in which she tries to transfer the common-day use of the 
word fidelity to curriculum use and wonders whether fidelity means perfection, 
is in contrast with Margaret’s statement that fidelity is not possible owing to the 
dynamic and complex nature of classroom interactions. In essence, on the one 
hand, Kelly is wondering whether “implementation fidelity” is a dichotomous 
concept, that is, whether it is possible for a teacher be “somewhat faithful” to 
the textbook. On the other hand, Margaret is saying that a teacher can approach 
fidelity but never achieve it, which suggests a continuous model of fidelity, that 
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is, that there are degrees of faithfulness. We now discuss these issues, taking into 
account recent research.

Defining Implementation Fidelity
	 Implementation fidelity has been described as the extent to which there is a 
match between the written curriculum, as intended by the developers, and what 
teachers do in the classroom. This suggests that the construct of implementation 
fidelity is strict and dualistic (i.e., the curriculum was either implemented as in­
tended or not) and does not take into account the dynamic nature of classroom in­
struction. Indeed, teachers bring their own teaching philosophies and background 
experiences to their classrooms, leading them inevitably to adapt their instruction 
to the diverse needs of their particular students (Ben-Peretz 1990; Clandinin and 
Connelly 1992; Drake and Sherin 2006; Remillard 2005). It is commonly ac­
knowledged that a written curriculum cannot capture or fully represent guidance 
for teaching. As stated by Ball and Cohen (1996, p. 6),

Teachers necessarily select from and adapt materials to suit their own students. 
This creates a gap between curriculum developers’ intentions for students and 
what actually happens in lessons. Developers’ designs thus turn out to be in­
gredients in—not determinants of—the actual curriculum.

Moreover, curriculum implementation is an uneven process within and across 
schools (Grouws and Smith 2000; Kilpatrick 2003; Lambdin and Preston 1995; 
National Research Council 2004; Spillane and Zeuli 1999). Kilpatrick (2003, p. 
473) explains,

Two classrooms in which the same curriculum is supposedly being “imple­
mented” may look very different; the activities of teacher and students in each 
room may be quite dissimilar, with different learning opportunities available, 
different mathematical ideas under consideration, and different outcomes 
achieved.

	 As described by Huntley (2009), given the improvisational nature of class­
room teaching, rather than being dichotomous, we believe fidelity is more ap­
propriately conceptualized by a continuous measure, in which instruction is 
characterized along a continuum from being very close to what the developers 
had in mind to a distant zone where what is being done is nearly unrecognizable. 
Consistent with this perspective, we define implementation fidelity as a teacher’s 
use of a mathematics textbook as the developers intend, where adaptations are 
acceptable, provided they do not deviate too far from the developers’ intents. This 
leaves us with the issue of which adaptations are acceptable and which are unac­
ceptable. This problem has been articulated by Ben-Peretz (1990, p. 31): “How 
far may teachers go in their adaptations without destroying the spirit and mean­
ing of the curriculum they implement in their classes?”
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	 Significant adaptations that destroy the “spirit and meaning of a curricu­
lum” are relatively easy to identify: teachers omitting entire units (or chapters) 
in the textbook, teachers using a NSF-funded mathematics textbook emphasiz­
ing direct instruction more than suggested by the materials, and so on. Other 
adaptations are more subtle. For instance, many teachers whom we interviewed 
outlined changing the numbers in some problems to make them “friendlier” to 
students (e.g., by removing decimals), occasionally changing a problem context 
to spark interest in their students (on the basis of teachers’ experience with the 
textbook or of local surroundings), or modeling a particular experiment versus 
having each group of students perform it themselves (in situations where insuf­
ficient resources were available or when measurement errors would be likely to 
mask the phenomenon being studied). Laura described such changes as follows: 
“[I’m] not really talking about the underlying philosophy [of the materials] being 
changed at all.” What is not clear, though, is whether these types of adaptations 
are “acceptable.” This point is particularly salient when considering curriculum 
coherence. According to Trafton, Reys, and Wasman (2001, p. 260),

Coherence refers to the presentation of mathematics so that the core ideas of 
the subject are highlighted and cause students to see it as an integrated whole. 
… Standards-based materials promote coherence through an initial focus on 
big ideas, with an emphasis on connections and links to related mathematical 
ideas and applications.

Curriculum coherence is important for all curricula, whether NSF-funded 
or publisher-generated. Thus, one must be careful about making substantial  
alterations.
	 If the developers included a problem with decimals and a teacher replaces 
these with whole numbers, does this make a difference? We argue that in some 
instances it does. Our perspective was shared by some teachers during our in­
terviews with them. For instance, when discussing omitting material from their 
textbooks, some teachers said it should be done only in consultation with oth­
ers (e.g., the department chairperson or the district mathematics supervisor) and 
only with full knowledge of the advantages and disadvantages of doing so. As 
stated by Ken, “You need to look at the mathematics, and have experience to 
know if we take something out, is that going to kill the mathematics for that unit? 
Are we going to skip a big step or stage they were supposed to get?” Similarly, 
Nancy believes that supplementation should be done in a cautious and thoughtful 
manner, describing her approach as follows:

I would be very, very cautious and thoughtful about it. Teachers have to make 
some decisions based on the multiple demands from outside sources. So if on 
someone’s state test they’re going to be asking something that they know they 
have to cover, they can be thoughtful about where it’s most … appropriately 
placed…. As an example, if I know my kids are going to have to know how to 
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work with positive and negative numbers, but also have worked with fractions 
and decimals, I build it into my Accentuate the Negative unit. I’m not going to 
take a week out of the beginning of the school year to review whole-number 
operations or assign those as drill problems on the side. I just don’t think that 
that’s effective. It’s building it [in] where it works.

Conclusion
	 By the very nature of the profession, teachers will continue to supplement, 
omit problems or sections, and change the order of lessons presented in text­
books. Of course, different teachers make different decisions about when, and 
in what ways, they adapt their materials (Chval et al. 2009; Tarr et al. 2006). As 
shown from the data presented, teachers make these decisions for a variety of 
reasons depending on the type of curriculum materials they use. Moreover, it is 
clear that a number of recent influences have contributed to this decision-making 
process, especially the introduction of new curricula and related professional de­
velopment, the nature of state assessments and when they are administered, and 
the introduction of state and district curriculum standards.
	 How can teachers be supported so that they make well-informed, purposeful 
decisions (that is, acceptable adaptations) to benefit students’ learning of mathe­
matics? This process is challenging and requires time for teachers to meet and 
discuss issues related to curriculum. During these discussions, teachers must 
consider a variety of issues prior to the decision-making process. We recommend 
a series of questions (see fig. 20.1) to guide discussions related to adapting cur­
riculum materials and ultimately making decisions.
	 This series of questions demonstrates the complexity of what needs to be 
considered to make purposeful decisions about adapting curriculum. These de­
cisions are crucial and ultimately can facilitate or hinder curriculum coherence 
and thus students’ learning. As teams of teachers make purposeful decisions and 
evaluate their efforts, it is likely that more acceptable adaptations will result. Ul­
timately, this outcome will positively affect students’ learning and assist district 
administrators, researchers, and policymakers with their efforts to evaluate the 
effects of mathematics curricula on students’ learning.
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■	 Why do you want to make the change?

■	 What do you gain from making the change? What do you 
lose?

■	 If you are …
—	 omitting a lesson/problem, have you considered the pur-

pose for that lesson/problem?
—	 supplementing a lesson/problem, have you considered the 

quality of the supplement and how it connects with your 
curriculum materials?

—	 changing the sequence, have you considered the authors’ 
intent?

■	 How does the change impact the mathematical content …
—	 in related lessons or unit(s)?
—	 in future mathematics lessons or unit(s)?

■	 How will the change …
—	 enhance your students’ opportunities to learn  

mathematics?
—	 hinder your students’ opportunities to learn mathematics?

■	 How will the change impact different students, including 
gifted, special needs, and English language learners?

■	 In making this change, have you …
—	 considered the school calendar, standards, and standard-

ized testing?
—	 discussed the proposed change with other teachers at 

your grade level (or teachers at earlier or later grade  
levels)?

■	 How will you determine whether your change is effective?

Fig. 20.1. Questions to guide discussions related to adapting  
curriculum materials
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A lthough curriculum materials can strongly influence the nature of, 
and approaches to, mathematics teaching and learning (Boaler 2002;  

McCaffrey et al. 2001), curriculum materials alone do not determine how a 
lesson is implemented. While using curriculum materials, teachers need to 
consider the following questions.

•	 What are the important mathematical concepts and processes for 
today’s lesson, this unit, and this year (the grade level expectations 
[GLEs])?

•	 What do my students already know about these ideas?

•	 Do the district-adopted curriculum materials align with the GLEs?

•	 In what ways will I need to adapt, supplement, or omit portions of the 
curriculum materials to meet the needs of the students and attend to 
the GLEs?

	 The decisions teachers make regarding focusing on particular problems 
and solutions, using important questions and prompts during interactions with 
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students, facilitating students’ discussion of ideas, assessing students’ think-
ing about problems, and connecting ideas that emerge during discussion play a 
substantial role in how and what learning opportunities transpire. The thinking 
required for these decisions involves what we refer to as curricular reasoning 
(Roth McDuffie and Mather 2009).
	 Curricular reasoning refers to the thinking processes that teachers engage 
in as they work with curriculum materials to plan, implement, and reflect on 
instruction. As teachers endeavor to improve their practice, and as preservice 
teachers prepare to enter the profession, developing knowledge and skills to en-
gage in curricular reasoning is essential. In this article, we discuss how we have 
worked with teachers, practicing and preservice, to facilitate their development 
of curricular reasoning so as to support their efforts to teach effectively.
	 In this article we focus on the implemented curriculum, that is, the aspects 
of curriculum that directly affect students’ opportunity to learn. These include 
the mathematical goals that teachers focus on and the materials and plans that 
teachers use or develop to support students’ learning of those goals. In our dis-
cussion, we refer to published instructional materials (textbooks or other sets of 
lesson plans) as curriculum materials and the mathematical goals for learning as 
curriculum goals.

Why Focus on Developing Curricular 
Reasoning with Teachers?
	 Changes have occurred over the past twenty years that directly affect teach-
ers’ professional development related to mathematics teaching. The two most 
prominent shifts include curriculum materials aimed at problem solving, reason-
ing, and students’ conceptual understanding of mathematics; and the develop-
ment of curricular goals and standards and associated accountability issues for 
instruction (e.g., state grade-level tests).
	 The first shift was prompted by major curriculum development efforts sup-
ported by the National Science Foundation (NSF) in response to recommen-
dations outlined in Curriculum and Evaluation Standards, published by the  
National Council of Teachers of Mathematics (NCTM 1989; Dossey 2007). Prior 
to the development of these curriculum materials, U.S. mathematics textbooks 
typically presented mathematics to students through sample problems and ex-
ercises. In contrast, NSF-funded materials, often referred to as standards-based 
curriculum materials, were designed to nurture students’ mathematical reasoning 
in solving and evidencing solutions, organize materials around important mathe
matical concepts and processes, develop knowledge from a problem-centered 
context, connect ideas, and develop communication and representation skills 
(Dossey 2007).



Developing Curricular Reasoning for Grades Pre-K–12 � 309  

	 The recommendations of NCTM, as well as the new standards-based cur-
riculum materials, call for teachers to think and teach differently. In planning 
instruction, teachers need to anticipate what prior knowledge, skills, and expe-
riences students might use in reasoning about mathematics problems. During 
instruction, teachers need to be aware of students’ thinking, difficulties, and 
progress. In assessing students, teachers need to look for valid and generalizable 
methods. With the shift in curriculum materials, teachers’ work involves reason-
ing with the curriculum (curricular reasoning) that extends beyond only knowing 
the curriculum (curricular knowledge; see Grossman [1990]).
	 Another shift in the nature of teachers’ work with curriculum has resulted 
from recent efforts to develop GLEs for students’ mathematics learning. Most 
states now stipulate learning goals in mathematics at each grade level (Reys et 
al. 2006). With GLEs as policy, teachers increasingly are expected to interpret 
and align their curriculum materials with state GLEs. However, state GLEs vary 
widely from one state to another (Reys et al. 2006), and therefore no nationally 
developed set of curriculum materials is likely to align perfectly with any partic-
ular state’s GLEs. Moreover, it could be that neither the curriculum goals (in the 
form of GLEs) nor the curriculum materials (district-adopted textbooks) align 
with the needs of a particular group of students. Consequently, developing a cur-
riculum that considers all students’ prior knowledge and experiences (including 
prior mathematics learning, cultural and linguistic backgrounds, and exceptional 
needs) is virtually impossible on a national or state level. As Darling-Hammond 
and her colleagues (2005) contended, “No textbook writer, curriculum developer, 
or department head can know exactly what it is that a particular teacher must do 
within a classroom” (p. 172). Thus, part of teaching is navigating these often-
conflicting demands.
	 Recognizing the shifts in curriculum aims and the demands of teaching, we 
sought to develop activities that focus on developing teachers’ knowledge for, 
and skills directly related to, curricular reasoning. Our ultimate goal is to help 
teachers effectively use and implement curriculum materials to support students’ 
learning.

A Model Description for Curricular 
Reasoning
	 Figure 21.1 illustrates the relationship of our notion of curricular reasoning 
to other scholars’ constructs about curriculum, including curricular knowledge 
(Shulman 1986; Grossman 1990), curricular vision (Darling-Hammond et al. 
2005), and curricular trust (Drake and Sherin 2009).
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Fig. 21.1. Relationships among curricular reasoning,  
curricular knowledge, vision, and trust

This model is situated in a larger framework and honors the many knowledge 
forms (e.g., content knowledge and pedagogical content knowledge) that guide 
teachers’ work and contribute to their curricular reasoning.

Curricular Knowledge
	 Grossman (1990) and Shulman  (1986) characterize curricular knowledge 
as “knowledge of curriculum materials available for teaching particular subject 
matter, as well as knowledge about both the horizontal and vertical curricula for 
a subject” (Grossman 1990, p. 8). Curricular knowledge assumes both a famil-
iarity with myriad curriculum materials and also an understanding of the cur-
riculum materials’ philosophical perspective. For example, teachers’ guides in 
some contemporary textbooks contain sections that explicitly describe the au-
thors’ philosophical assumptions and rationale for design features of the curricu-
lum. In addition, teachers’ guides may focus on students’ thinking and processes 
for engaging students in the lesson. To use the curriculum materials effectively, 

Figure 1. Relationship between Curricular Reasoning, 
Curricular Knowledge, Vision, and Trust  

Curricular
Knowledge

(fundamental, but not 
the only type of 

knowledge needed)

  Curricular Reasoning
• Analyzing
• Mapping
• Reflecting

serves as
foundation for

may require
additional 
information

influences the
development of
(or lack of)

generates

Curricular
Vision

Curricular
Trust



Developing Curricular Reasoning for Grades Pre-K–12 � 311  

teachers should recognize and understand the philosophical assumptions used to 
create the materials.

Curricular Vision and Curricular Trust 
	 Darling-Hammond et al. (2005, p. 177) describe curricular vision as a way 
of viewing curricular materials and their interactions with, and influence on,  
students:

Well prepared teachers have developed a sense of “where they are going” and 
how they and their students are going to get there. They are able to create a co-
herent curriculum that is also responsive to the needs of students…. They have 
thought about social purposes for education as well as their own vision and 
have integrated these so that their students can be successful in the world out-
side of school as well as within the supportive environment of the classroom.

Curricular trust builds on curricular vision. Drake and Sherin (2009) describe it 
as a set of—

beliefs and practices that reflect an understanding of the curriculum materials, 
[and that these materials] as written, provide a developmental trajectory that 
will support students in achieving the mathematical goals defined by the cur-
ricular vision.

Once teachers understand where a curriculum is going, they are positioned to 
decide whether they trust the materials to meet their mathematical learning goals 
for their students (curricular trust).
	 Through curricular reasoning, teachers develop curricular vision, and they 
also decide whether they trust the curriculum materials as written. Through cur-
ricular vision, teachers see how curriculum materials build mathematical ideas 
over time and what students are learning from the materials. As teachers apply 
curricular reasoning to plan, implement, and reflect on instruction, they use and 
continue to generate curricular vision (Roth McDuffie and Mather 2009). Drake 
and Sherin (2009) found that as teachers gained more experience with certain 
curriculum materials, they increasingly used curricular vision to identify the 
important ideas of the curriculum program and to guide their interactions with 
students. In doing so, they developed curricular trust for the integrity and coher-
ence of the curricular materials, perceiving the materials as well constructed in 
light of students’ learning needs. Thus, through curricular reasoning teachers can 
develop curricular vision and curricular trust.

Processes Involving Curricular Reasoning 
	 On the basis of earlier research, we identified three processes teachers 
engage in that draw on curricular reasoning, namely, analyzing curriculum  
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materials from learners’ perspectives, mapping learning trajectories, and reflect-
ing on and revising plans on the basis of experiences in teaching and learning 
(Roth McDuffie and Mather 2009).

Analyzing curriculum materials from learners’  
perspectives
	 Analyzing curriculum materials from the learners’ perspectives takes place 
prior to, during, and after instruction and entails identifying and understanding the 
important mathematics, gaining a better sense of potential issues and approaches 
that learners might bring to a lesson (e.g., prior knowledge and correct or incor-
rect strategies that learners might employ), and considering students’ background 
and experiences to ensure that equity principles are being addressed and met. 
By analyzing the materials from learners’ perspectives, teachers increase their 
awareness of strengths and limitations afforded by curriculum materials. With 
this awareness, teachers can deliberately plan to leverage strengths and remedy 
limitations in using the materials.

Mapping learning trajectories
	 The process of mapping learning trajectories includes examining how 
mathematical understandings build over time (vertical development), analyzing 
how mathematics topics learned connect (horizontal development), and ensuring 
overall coherence in the learners, curriculum materials, and curriculum goals 
(GLEs). This process helps teachers prepare for, and make decisions to deter-
mine, content for which students need to develop strong understandings in a unit 
or grade; content for which students will develop over time, perhaps across sev-
eral grades; and content that students will need to connect or apply to other areas 
of mathematics or other disciplines.

Reflecting on and revising plans
	 Teachers reflect on implemented lessons to consider implications of the 
immediately upcoming lesson and also for future implementation of the same 
lesson. Becoming a reflective practitioner is necessary for continually improv-
ing practice. For curricular reasoning to truly affect instruction, teachers need 
to adopt an inquiry stance during reflection and consider such questions as the 
following:

•	 Did the materials and the sequence of tasks support my students in 
meeting learning goals?

•	 Did I effectively anticipate my students’ needs in preparing them to 
engage in the tasks?

•	 Did I sequence and connect ideas in the materials to solidify learning 
and prepare for future lessons?



Developing Curricular Reasoning for Grades Pre-K–12 � 313  

Examples of Activities That Develop 
Curricular Reasoning
	 We have described three processes of curricular reasoning: analyzing cur-
riculum materials from learners’ perspectives, mapping learning trajectories, and 
reflecting on and revising plans on the basis of teaching and learning experi-
ences. In this section, we illustrate activities that incorporate and help develop 
these processes, recognizing that the activities will cultivate multiple curricular 
reasoning processes simultaneously. We present three types of activities and as-
signments that we have used with teachers: exploring records of practice, analyz-
ing textbooks, and developing lesson images.

Exploring Records of Practice 
	 Using multimedia case studies (Doerr and Thompson 2004) or written epi-
sodes of classroom vignettes (Stein et al. 2000), which we refer to as records of 
practice, can help teachers situate their own learning in an authentic classroom 
experience. In this way, teachers have the opportunity to develop curricular rea-
soning by analyzing curriculum materials and, to a lesser extent, reflecting on and 
revising plans on the basis of teaching and learning experiences. While teachers 
explore records of practice (both as teachers and as learners), they develop skills 
to raise and answer such questions as the following:

•	 What are the important mathematical concepts and processes for to-
day’s lesson, this unit, and this year’s GLEs?

•	 What do my students already know about these ideas?

•	 In what ways will I need to adapt, supplement, or omit portions of the 
curriculum materials to meet the needs of the students and attend to 
the GLEs?

	 To use records of practice effectively, we first encouraged teachers to think 
through the records as both learners and teachers while we facilitated the dis-
cussion, modeling the practices. To begin, we required teachers to perform the 
specific task(s) they would encounter in the records of practice. For example, 
when using “The Case of Catherine Evans and David Young” (Smith, Silver, and 
Stein 2005, pp. 8–31), we first had the teachers complete the Hexagon-Pattern 
task, in which they determine the perimeters of various trains of hexagonal pat-
tern blocks placed side by side (see fig. 21.2). After determining the lengths of 
trains, they are also asked to generalize the pattern to compute the perimeter of 
any length of a train. Further, teachers are pressed to find as many different ways 
as possible to compute and justify the perimeter. This question started them on 
the path to understanding students’ perspectives and uncovering mathematical 
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content (Smith, Silver, and Stein 2005). This experience mirrored the practice 
of anticipating ways that students might solve the problems in the curriculum 
materials.

Fig. 21.2. First three hexagon trains

	 After they engaged in the specific problem as learners, the teachers then con-
sidered the teacher’s role. They were challenged to think about multiple ways that 
students might solve problems and then discuss with others the responses stu-
dents might offer. In this particular task, teachers anticipated that students might 
describe the pattern in a number of different ways that can be characterized as 
either visual-geometric or arithmetic-algebraic. One visual-geometric approach 
to determining the perimeter was to consider each hexagon in the train having 
four lengths of sides exposed and then the two end hexagons having one unit 
per end. This was represented as Perimeter = (4 units each) × (# of hexagons) + 
(one unit per end), or P = 4x + 2. There are numerous other visual-geometric ap-
proaches, such as considering the “inside hexagons” and “outside hexagons” or 
the number of crests or valleys in the figure. The arithmetic-algebraic approaches 
are based on the pattern of numbers in the table of values. Teachers using the 
recursive pattern of “adding 4” to the previous quantity recognized that this re-
lationship was linear because of the constant increase of 4 and then determined 
from substituting values that the b in the equation y = mx + b would be 2. Other 
arithmetic-algebraic approaches included using a graphical representation to plot 
the values and determine the slope and intercept from the graph.
	 We found that teachers had not always considered all the ways students 
approached problems, nor did the teachers always understand others’ multiple 
approaches. However, as teachers shared their various solution strategies, their 
understanding of the content was enhanced, thus helping set the stage for under-
standing teachers’ decisions in the records of practice.
	 Individually teachers read or watched records of practice, primed with some 
guiding questions. The questions were either furnished by facilitators’ guides 
accompanying the records of practice or designed by the professional develop-
ment facilitators to focus teachers’ attention on particular pedagogical moves 
that support students’ thinking. We found it important to teachers’ development 
to press them to cite specific evidence (e.g., line numbers, paragraphs, or times) 

Figure 2. First three Hexagon
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in the records of practice to avoid generalities. This practice allowed teachers to 
develop a notion of what constitutes appropriate evidence at the same time that 
they developed an understanding of the issues that emerged in the record. Once 
teachers individually thought about the records of practice, we discussed the re-
cords in small groups or whole groups to compare themes and observations.
	 As a facilitator, modeling good practices of guiding discussion by monitor-
ing, selecting, and sequencing the teachers’ thoughts and observations and then 
as a group reflecting on the process helped teachers in their role both as a teacher 
and learner. For example, it was important to parse out the important mathemati-
cal ideas that emerged in the students’ thinking in the cases. Delving into specific 
examples and evidence of students’ thinking that exemplified how students un-
derstood the notion of variable, or whether students saw the difference between 
recursive relationships versus explicit ones, are two such examples. Eventually 
the strength of the records of practice is the transfer to other situations through 
the generalizations of the practice.

Analyzing Textbooks
	 Analyzing textbooks to become aware of the mathematics presented is a 
common professional development activity for teachers. We expanded this activ-
ity into vertical textbook curriculum analyses by asking teachers not only to see 
the mathematics at their level but also to determine how mathematical under-
standings build over time. While teachers analyzed textbooks, they developed the 
skills to raise and answer the following questions:

•	 What do my students already know about these ideas?

•	 Do the district-adopted curriculum materials align with the GLEs?

	 For this activity, we directed teachers to map how such topics as multipli-
cation, fractions, or patterns were addressed by students of different ages. The 
mapping process began by teachers’ examining grades K–12 textbooks and iden-
tifying the scope and sequence of a topic using the following questions to guide 
their investigation:

•	 When are students first introduced to the topic?

•	 What relationships are students expected to learn?

•	 What procedures are important in the topic?

•	 What models are used to represent the topic?

As teachers answered the questions, they demonstrated their ability to gain 
knowledge about how textbooks defined the topic.
	 Using patterns as an example, teachers found that kindergarten textbooks 
asked children to identify and copy repeating patterns. As the children become 
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more comfortable with patterns, they answer the “what comes next?” question 
and show how to extend patterns. Primary-school-aged children expand their pat-
tern knowledge by creating their own repeating patterns and by exploring grow-
ing patterns. Throughout elementary school and middle school, students continue 
to work with patterns as they identify, copy, extend, create, generalize, and make 
predictions with patterns. The teachers also realized that students use various 
representations of patterns, such as physical, table, graphical, and symbolic, and 
that much of the pattern work for high school students is done in the context of 
functions.
	 In addition to having teachers identify a topic’s pivotal relationships and 
procedures, we challenged teachers to determine how the different concepts and 
procedures built off one another. For example, teachers saw that children’s work 
with doubling patterns is the basis of students’ knowledge of exponential func-
tions. Teachers also realized that children’s determination of what comes next in 
a pattern is recursive thinking, which leads to finite differences and the connec-
tion to polynomial functions. In this way, teachers recognized how they could 
design instruction to build off these earlier ideas and, in the process, better meet 
the needs of students. Having a better understanding of students’ mathematical 
journey enabled teachers to develop curricular vision.

Developing Lesson Images
	 A common pedagogical task in teacher education is to involve teachers in 
developing a lesson, teaching the lesson, and then reflecting on the teaching and 
learning that occurred. While teachers develop lesson images, they cultivate the 
skills to raise and answer the following questions:

•	 What are the important mathematical concepts and processes for to-
day’s lesson, this unit, and this year (the GLEs)?

•	 Do the district-adopted curriculum materials align with the GLEs)?

•	 In what ways will I need to adapt, supplement, or omit portions of the 
curriculum materials to meet the needs of the students and attend to 
the GLEs?

Given that U.S. teachers typically teach with published curriculum materials 
(Stigler and Hiebert 1999), we encouraged them to design the lesson based on 
published curriculum materials.
	 An initial task in planning was to identify the primary mathematical em-
phasis of a lesson or unit. Often an activity can be used to teach a range of 
concepts or processes. Teachers needed to determine the primary emphasis for 
their students’ learning by considering their students’ needs and alignment with 
their GLEs. During this part of planning, teachers relied heavily on curricular 
knowledge to identify and select tasks from curriculum materials and engaged 
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in curricular reasoning by analyzing materials and mapping the learning trajec-
tory. For example, a teacher focused on a lesson that introduced similar figures 
from Connected Mathematics’ “Stretching and Shrinking” unit (Lappan et al. 
1998). She anticipated her students’ difficulties with understanding that angles in 
similar figures were congruent. She predicted that some students might perceive 
that an angle in a scaled-up figure was larger when in fact it was congruent to 
its corresponding angle in a scaled-down version of the same figure. The teacher 
recognized that understanding congruent angles in similar figures was founda-
tional to later unit work that focused on scaling and proportionality in similar 
figures, and these ideas were part of her state’s GLEs. So she decided that she 
needed to make sure that her students focused on congruent angles, and she built 
these understandings during the lesson. In anticipating challenges for students 
and using curricular vision, teachers determined how to implement the materials 
to meet their students’ needs, align with GLEs, and ensure horizontal and vertical  
coherence.
	 Next, teachers engaged in developing a mental image of important interac-
tions with students during the lesson. In writing a plan, teachers analyzed the cur-
riculum materials to anticipate students’ needs, questions, challenges, possible 
approaches, and solutions. Similarly, teachers anticipated fundamental questions, 
prompts, and problems they might need to provide to facilitate learning. In addi-
tion, teachers described important indicators and approaches to look for in stu-
dents’ work as the lesson progresses. For example, the teacher working with the 
lesson on similar figures acted out the lesson prior to teaching and planned to ask 
questions about similar figures, such as the following:

•	 Are the figures the same size?

•	 If the figures are not the same size, can the corresponding angles in the 
figures be congruent? How do you know?

She also planned to feature figures that were not similar and therefore did not 
have congruent corresponding angles. As described previously, by taking on both 
a teacher’s role and a learner’s role, teachers more thoroughly anticipated situa-
tions that might arise during instruction.
	 A final section of the initial plan included a written reflection on the lesson 
prior to teaching. Although we usually reflect on instruction after instruction, 
we suggested that teachers also reflect on a lesson’s strengths and weaknesses in 
advance. For the similar-figures lesson, the teacher noted that students could en-
gage in the lesson without using a protractor to measure angles. (They could test 
angles for congruence by laying them on top of each other). Although she did not 
intend for students to measure with protractors, she recognized that measuring 
angles was a skill that some students would need to review before they would be 
ready to engage in other unit lessons. Noting this possible limitation helped her 
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be more prepared for future lessons. This early reflection helped teachers engage 
in inquiry and more substantive reflection during and after instruction.
	 Once teachers conducted a thorough thought experiment to prepare for 
teaching and learning, the project’s next phase included teaching the lesson and 
reflecting on teaching and learning. As part of their reflections, teachers provided 
specific evidence for the nature of students’ learning, understandings, and areas 
for further development, and for lesson aspects to change for future teaching. In 
addition, teachers selected three to four students for in-depth reflection on their 
learning. For the selected students, teachers maintained detailed records, during 
and after the lesson, of students’ questions or comments, ways they approached 
problems or worked with various representations with the curricular materials, 
indicators of understanding or a lack of understanding, and future directions for 
their learning. 
	 The teacher working on the similar-figures lesson found that many students 
demonstrated difficulty in seeing that angles were congruent in similar shapes 
of different sizes, as anticipated. By carefully thinking through the lesson in 
advance, the teacher felt more prepared to focus students’ thinking and prompt 
them to cut out figures and compare angles (or measure angles) so that they 
could understand the relationships during the lesson. Selecting a few students 
pushed teachers to look for individual learning in the class and conduct deeper 
analysis of instruction. 
	 In writing this report, the teachers engaged in the processes of analyzing 
the materials and mapping a learning trajectory in relation to their observations 
of students’ learning, instead of only imagining how learning would progress. 
Moreover, this final phase provided an opportunity to connect and synthesize 
reflections on teaching and learning to improve future instruction. By encourag-
ing this level of thinking and writing, we hoped to develop habits of mind and 
inquiry-focused dispositions that could become embedded in practice.

Summary
	 The benefits of helping teachers develop curricular reasoning were evident 
in their actions. Teachers became more aware of the purpose and philosophy of 
their mathematics curriculum materials. Teachers began to view teaching and 
learning mathematics differently than they had during their previous experiences 
as teachers or students. Their resulting actions showed that they not only better 
understood the mathematics they were responsible for teaching but also under-
stood how students’ earlier and later mathematical experiences influenced their 
teaching. They developed ways to structure and implement lessons aimed at fa-
cilitating students’ learning through the materials.
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	 Challenges arose after we engaged teachers in curricular reasoning activi-
ties. In some instances, teachers made curriculum-based instructional decisions 
in planning but did not implement their ideas in the classroom as intended. As 
teachers demonstrated their ability to develop and apply curricular reasoning, 
they also described the process as overwhelming. Our challenge now is develop-
ing ongoing support systems in schools for teachers to engage in and use cur-
ricular reasoning in planning and enacting instruction.
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Engagement with instructional materials is a commonly used and effective 
professional development strategy (Loucks-Horsley et al. 2003). Because 

many teachers’ mathematical and pedagogical conceptions are deeply tied to 
traditional curriculum and instruction, making change—even with the support 
of innovative materials—can be very difficult. However, classroom instruction 
with innovative curriculum materials may compel teachers to become aware of 
and alter their conceptions on the basis of new types of classroom experiences 
with students and mathematics. Curriculum-based professional development for 
in-service teachers often aims to support teachers as they make sense of the chal-
lenging mathematical and pedagogical questions that can arise when teaching 
with new materials. Roth McDuffie and Mather (2009), for example, described 
how a team of teachers, together with a university mathematics educator, col-
laboratively engaged in four activities of “curricular reasoning” (p. 302) as they 
worked with one curriculum unit: analyzing curriculum materials from learners’ 
perspectives, doing tasks together as learners, mapping learning trajectories, and 
revising plans on the basis of work with students during instruction.

The work reported in this article was funded by the National Science Foundation (NSF) 
under grant no. 0536678. Any opinions, findings, and conclusions or recommendations 
expressed in this publication are those of the authors and do not necessarily reflect the 
views of the NSF.
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	 In light of the challenges of curriculum implementation, as well as the po-
tential of curriculum materials to promote teachers’ learning, teacher educators 
have increasingly begun to integrate grades K–12 instructional materials into 
preservice teacher education courses (Frykholm 2005; Lloyd 2006; Lloyd and 
Behm 2005). Although preservice teachers do not typically engage fully in all 
four activities described by Roth McDuffie and Mather (2009), preservice teach-
er education is an opportune time to lay the foundation for teachers’ future devel-
opment of productive interactions with mathematics instructional materials.
	 A common way that teacher educators have incorporated curriculum mate-
rials into mathematics and methods courses is by engaging preservice teachers 
with problems and activities with the goal of learning or relearning mathematical 
subject matter. As is often true for in-service teachers, preservice teachers benefit 
from “doing tasks together as learners” (Roth McDuffie and Mather 2009, p. 
308) to revisit seemingly familiar mathematical ideas and exploring unfamiliar 
mathematics, such as probability, statistics, and discrete mathematics. In contrast 
with in-service teachers, whose past and present instructional experiences with 
students can provide rich data for “analyzing curriculum materials from learners’ 
perspectives” (p. 308), most preservice teachers must rely largely on reflection 
on their own learning and observations of their peers’ learning. As preservice 
teachers engage with curricular activities, an examination of their own learning 
processes can help them begin to recognize the significance of the mathematical 
development that occurs during inquiry-based, student-centered activities. With 
support from teacher educators and peers, preservice teachers can engage in criti-
cal analysis of the content and instructional design of different curriculum pro-
grams to begin to develop important understandings and capabilities and prepare 
for their future teaching.

Principles for School Mathematics
	 We have used NCTM’s (2000) six Principles for school mathematics as a 
framework for designing preservice teacher education activities that involve mid-
dle and high school curriculum materials. Table 22.1 presents sample strategies 
corresponding to the six Principles: Equity, Curriculum, Teaching, Learning,  
Assessment, and Technology. In the following sections, we offer specific illustra-
tions of selected strategies from table 22.1 (marked with asterisks). Our aim is 
to highlight the powerful role that activities based on curriculum materials can 
play in preservice teachers’ learning1 about each of the six Principles for school 
mathematics.

1. Although the focus of our work has been preservice teachers’ learning, readers are 
likely to find the strategies in table 22.1 relevant to the learning of in-service mathematics 
teachers as well.
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Table 22.1 
Strategies for Using Curriculum Materials in Teacher Education

Principle Strategy: Support Preservice Teachers as They … 

Equity •	 Evaluate the ways in which a particular textbook lesson or cur-
riculum unit exhibits “high expectations” *

•	 Sort tasks and problems from curriculum materials according to 
their levels of cognitive demand 

•	 Identify ways to differentiate within a particular curricular activ-
ity for diverse learners, including students with special needs *

•	 Make focused observations of the material and social resources 
available to support the use of different curriculum materials in 
a variety of schools (e.g., urban schools, rural schools, high- and 
low-achieving schools, schools serving low-income and minority 
students) 

Curriculum •	 Create a concept map to illustrate how a particular mathemati-
cal idea builds on, and connects with, other ideas in one unit or 
chapter of a curriculum program 

•	 Trace the development of one mathematical concept through the 
grade levels of a curriculum program (e.g., How is the concept of 
variable developed across the grade levels in a particular middle-
grades curriculum program?)

•	 Compare and contrast the ways that two different units or chap-
ters approach the teaching and learning of the same mathematical 
topic * 

•	 Identify the philosophies underlying different curriculum pro-
grams and relate them to the ways the textbook or curriculum 
materials position students and the teacher in the learning process

•	 Develop criteria for evaluating curriculum materials in light of 
the content and process Standards (NCTM 2000) and apply the 
criteria to a variety of materials

Teaching •	 Engage in solving the mathematics problems and investigations 
from selected curriculum materials to develop new awareness 
and understandings of important mathematics *

•	 For a particular mathematical topic, compare the mathematical 
approaches of different curriculum materials to the Standards 
recommendations for that topic *

•	 Watch a video of a classroom in which a particular lesson is 
taught; using the teacher’s guide, identify the teacher’s adapta-
tions and develop hypotheses about why those adaptations were 
made 

•	 Use a teacher’s guide from a curriculum program to plan and 
teach a lesson to peers *

•	 Develop appropriate warm-up or extension activities that corre-
spond with particular lessons and support students’ learning

(Continued)
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Table 22.1—Continued
Strategies for Using Curriculum Materials in Teacher Education

Note: This article offers specific illustrations of the strategies in table 22.1 that are 
marked with an asterisk (*).

Equity Principle
	 The Equity Principle states, “Excellence in mathematics education requires 
equity—high expectations and strong support for all students” (NCTM 2000, 
p. 12). This vision of equity challenges teachers to raise expectations for the 
mathematical learning of all students and to provide instruction that responds 
to students’ prior knowledge, academic strengths, and individual interests. For 
preservice teachers to enact this vision in their future mathematics instruction, 

Principle Strategy: Support Preservice Teachers as They … 

Learning •	 Identify opportunities for students to develop both procedural 
fluency and conceptual understanding within a particular les-
son or activity

•	 Sort mathematical tasks (selected from various curriculum 
materials) according to the opportunities the tasks provide for 
student learning (see, e.g., Arbaugh and Brown [2005])

•	 Hypothesize about typical and creative student responses to 
a task or problem; anticipate difficulties students might have 
with a task or problem; and develop possible ways to address 
students’ difficulties *

Assessment •	 Examine a variety of student work on one particular  
curricular task to develop a rubric or guide for analyzing  
student responses 

•	 Develop a collection of assessment approaches (e.g., open-
ended questions *, constructed-response tasks, selected-re-
sponse items, performance tasks, observations, conversations, 
journals, and portfolios) to determine students’ learning in a 
particular chapter or unit 

Technology •	 Use technology-rich curricular tasks to learn about technologi-
cal tools (e.g., Geometer’s Sketchpad) and unfamiliar mathe
matical areas (such as discrete mathematics) 

•	 Explore computer and calculator software and activities that 
augment curriculum materials *

•	 Adapt lessons to incorporate technology (calculators or  
computers) in ways that will enhance students’ learning of  
mathematics *
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they need to be supported in focused experiences that allow them to identify and 
explore the pedagogical implications of the Equity Principle.

Identifying high expectations in a curricular activity
	 It is widely accepted that teachers’ expectations of students have significant 
impact on learning and teaching practices (Knapp 1995; Oakes 1990). In view of 
this outcome, the NCTM Standards emphasize high expectations for all students. 
To help future teachers attain this goal, we have provided them with structured 
opportunities to evaluate and identify facets of high expectations in mathematics 
curriculum materials.
	 For example, we have asked preservice teachers to evaluate an investigation 
in which students develop expressions for surface area, in “Say It with Sym-
bols” (Lappan et al. [2005]). The preservice teachers identified several aspects 
of high expectations: valuing students’ prior knowledge, varied approaches, and 
constructing knowledge. For example, one preservice teacher identified prior 
knowledge as an issue: “This lesson sometimes requires students to retrieve pri-
or knowledge that they were ‘supposed’ to learn in a previous class or year of 
school. However, it is not always safe to assume that your students know some-
thing.” Another preservice teacher wrote,

This lesson is one that I would consider using in my classroom. Looking back, 
surface area for me was, “Here are the formulas, find the surface area.” … I 
love how the students are expected to find their own equations and compare 
them to their peers’. If the students are expected to find the equations them-
selves, then in the future, if they were to forget the equations, they are more 
likely to be able to come up with [them] again.

As this comment suggests, these preservice teachers reflected on their own learn-
ing, hypothesized about the learning of students, and developed appreciation for 
those activities that have high expectations for students’ mathematical learning. 
It is noteworthy that, like the in-service teachers described by Roth McDuffie 
and Mather (2009), these preservice teachers “anticipated learners’ perspectives, 
thinking, and approaches” (p. 308) as they analyzed curriculum materials from 
learners’ perspectives.

Differentiating a curricular activity for diverse learners
	 The Standards (NCTM 2000) argue for the provision of strong support for 
all students. Unlike past attempts to address diverse student populations, which 
emphasized teacher-directed instruction and little cooperative and peer-supported 
learning (Knapp 1995), the Standards advocate instructional programs that em-
power all students to learn mathematics. We have asked preservice teachers to 
review curriculum materials with respect to their potential to meet the needs of 
diverse students. Consider the following excerpts from their comments: 
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The unit is very wordy. This may cause some difficulty for students with lan-
guage or reading deficits. On page 70 of the teacher’s manual there is a tip for 
linguistically diverse classrooms, and the use of manipulatives and symbols 
is language-neutral, but the descriptive sections seem prohibitive to English 
language learners.

I can’t help but wonder about those students who cannot afford graphing cal-
culators. I feel that the school should supply graphing calculators, this lesson 
should be implemented without calculators, or the teacher should use a calcu-
lator system in which examples may be visible to all students.

The group-work setup would be the main place where some students may be 
feeling left out. However, as Boaler (2006) pointed out, teachers need to walk 
around and assign competence to individuals who may not feel included in the 
lesson. While it is the students who are teaching, teachers must be available to 
assist in the learning process.

In these comments, preservice teachers identified potential equity issues related 
to language, technology, and cooperative learning and, in some instances, sug-
gested ways of attending to those issues. As preservice teachers evaluated and 
collectively discussed particular mathematics curriculum materials, they ex-
panded their understandings of such terms as “high expectations” and “strong 
support” that are central to the Equity Principle.

The Curriculum Principle
	 NCTM’s (2000) Curriculum Principle states, “A curriculum is more than 
a collection of activities. It must be coherent, focused on important mathemat-
ics, and well articulated across the grades” (p. 14). For preservice teachers, this 
Principle can seem abstract without consideration of a specific curriculum frame-
work, program, or set of materials. Table 22.1 suggests several experiences in 
which preservice teachers critically examine the content and structure of cur-
riculum programs. Whether this examination takes place on a small scale (e.g., 
considering the importance of the mathematics addressed in specific problems 
or investigations in a curriculum unit or textbook section) or a large scale (e.g., 
looking at the treatment of a topic across an entire curriculum program), the goal 
is for preservice teachers to develop an appreciation for the role that curriculum 
materials can play in the design of instruction that supports students’ building 
connections among important mathematical ideas.

Comparing and contrasting the approaches of different 
curriculum materials
	 Lloyd (2006) asked a group of preservice teachers to compare two very 
similar problems that appeared in two different middle school curriculum units 
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(Prime Time [Lappan et al. 1996] and Reflections on Number [Mathematics in 
Context 1998]). The Locker Problem from Prime Time (pp. 58–60) states, 

There are 1000 lockers in the long hall of Westfalls High.… The lockers are 
numbered from 1 to 1000.… Student 1 runs down the row of lockers and 
opens every door. Student 2 closes the doors of lockers 2, 4, 6, 8, and so on to 
the end of the line. Student 3 changes the state of the doors of lockers 3, 6, 9, 
12, and so on to the end of the line. (The student opens the door if it is closed 
and closes the door if it is open.) Student 4 changes the state of the doors of 
lockers 4, 8, 12, 16, and so on … until all 1000 students have had a turn. When 
all the students are finished, which lockers are open?

In the Changing Positions Problem in Reflections on Number, numbered students 
stand up and sit down in a way similar to lockers being opened and closed in the 
Locker Problem.
	 These problems deal with the same mathematical idea (the number of factors 
of perfect squares2) but use different real-world contexts and appear in different 
locations in the units (at the beginning of one unit and at the end of the other). 
After working on the mathematics problems of both units, preservice teachers 
were asked to compare and contrast the two problems, identify how each prob-
lem engaged them in thinking about several mathematical ideas (factors, factor 
pairs, and square numbers), and consider the accessibility of the context of each 
problem. Because the preservice teachers were also asked to hypothesize about 
the curriculum authors’ different decisions about where to place the problems in 
the units, the teachers were challenged to think about the impact of curriculum 
design on students’ learning. This activity contributed to the preservice teachers’ 
growing awareness that multiple ways can be used to design instruction about a 
particular topic.

Teaching Principle
	 “Effective mathematics teaching requires understanding what students know 
and need to learn and then challenging and supporting them to learn it well” 
(NCTM 2000, p. 16). As the examples of this section suggest, the use of strategi-
cally selected curriculum materials can help teachers develop new insights about 
mathematics and pedagogy.

Developing several different kinds of mathematical 
knowledge
	 An important part of the Teaching Principle is the notion that teachers need 
multiple forms of mathematical knowledge (NCTM 2000, p. 17): 

2. Because only the square numbers between 1 and 1000 have an odd number of factors, 
square-numbered lockers (1, 4, 9, etc.) are the lockers that are open when the students 
finish. 
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… knowledge about the whole domain; deep, flexible knowledge about curric-
ulum goals and about the important ideas that are central to their grade level; 
knowledge about the challenges students are likely to encounter in learning 
these ideas; knowledge about how the ideas can be represented to teach them 
effectively; and knowledge about how students’ understanding can be assessed.

Unfortunately, “this kind of knowledge is beyond what most teachers experience 
in standard preservice courses in the United States” (NCTM 2000, p. 17).
	 We have selected lessons and activities from a variety of secondary school 
curriculum materials to enhance preservice teachers’ mathematical knowledge 
for teaching. For example, prior to their undergraduate mathematics coursework, 
many preservice secondary school teachers are unfamiliar with discrete mathe
matics. By working on and discussing discrete mathematics problems and in-
vestigations in several curriculum units, our preservice teachers have had the 
opportunity to gain personal experience with an unfamiliar mathematical area 
and consider the potential role of discrete mathematics in the secondary school 
curriculum. As one preservice teacher wrote, 

Right now, the curriculum seems so focused on algebra and calculus. Although 
I feel that algebra and calculus are important, I feel that discrete math is not 
given much importance. It has many applications that are just as, if not more, 
important than calculus.

	 Roth McDuffie and Mather (2009) reported that, in addition to analyzing 
curriculum materials from learners’ perspectives, the in-service teachers in their 
study “act[ed] out what students might do” (p. 310). By engaging in tasks as 
learners, the teachers revealed issues that they “had not anticipated in only ana-
lyzing the curriculum” (p. 310). Similarly, we have found that when preservice 
teachers work on problems from secondary school mathematics curriculum ma-
terials, they have opportunities not only to reconsider and revise their existing un-
derstandings and views of subject matter but also to develop ideas about teaching 
that subject matter. For example, we have worked with our preservice secondary 
school teachers on the geometry and trigonometry activities from Coxford and 
others (2003). In some of those activities, preservice teachers built pantographs 
to explore and reexamine notions of similarity. Figure 22.1 shows one preservice 
teacher’s drawing of a pantograph that she built to magnify images.
	 Reflecting on their learning about similarity with pantographs, preservice 
teachers expressed their awareness of changes in their knowledge and views 
about similarity as well as their developing views about teaching. Consider one 
preservice teacher’s comments: 

The section on the pantograph changed my understanding of similar trian-
gles and their application. Having [an early field experience] in a geometry 
class, I was curious why similar triangles were such a big section. Through 
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the pantograph activities, I can see more clearly how knowledge of the simi-
larity and proportionality of triangles can be transferred to similarity of other 
shapes. These activities are giving me a clearer understanding of how manip-
ulatives can be incorporated into a high school classroom. The math being 
investigated here is sophisticated, and the use of manipulatives respects the 
students’ maturity level.

Whereas previously our preservice teachers had a difficult time envisioning 
the role of real-world problems and physical materials in high school geometry 
classes, after working with pantographs and the concept of similarity, they pos-
sessed new ideas about how to make their future instruction engaging and mean-
ingful for students.

Identifying content and process standards in  
curricular units
	 As we prepare teachers for their future classrooms, we aim to familiarize 
them with the Content and Process Standards (NCTM 2000) so that they are 
equipped with a coherent framework for making instructional and curricular de-
cisions. As the Teaching Principle asserts, teachers must identify the mathemat-
ics that students need to learn and help them learn that mathematics. They must 
also consider the nature of the mathematical processes in which students engage. 
Table 22.2 shows the work of one group of preservice teachers who used the  
Process Standards to review a lesson (Making Purple, about using an area model 
to determine the theoretical probability of compound events) from the unit “What 
Do You Expect?” (Lappan et al. 2005). Through experiences using Content and 

Fig. 22.1. Example of a preservice teacher’s work related to  
similarity and pantographs

(a)	 Draw a pantograph that magnifies an image by 6.

(b)	 Explain how you could use the photograph you drew in part (a) to make reductions 	
	 by a scale factor of 1/6.
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Process Standards to guide their analyses, preservice teachers can develop an in-
formed basis for making comparisons between different lessons and materials.

Using the teacher’s guide of a curriculum unit to plan  
and teach a lesson to peers
	 When in-service teachers use curriculum materials, they have opportunities 
to “revis[e] plans based on work with students during instruction” (Roth McDuffie 
and Mather 2009, p. 312). Although preservice teachers typically do not have such 
opportunities, in our teacher education program preservice teachers develop lesson 
plans and teach “mock lessons” to peers. Rather than require preservice teachers 
to develop or find lessons on their own, we have provided lessons from various 
curriculum materials and asked teachers to use those lessons to develop plans to 
teach their peers. Teaching—and reflecting on teaching—their peers allows pre-
service teachers to use curriculum materials for the design of instruction prior to 
student teaching and initial classroom instruction. The process of using a variety of 
instructional materials to teach peers offers opportunities for preservice teachers to 
learn not only about the Teaching Principle but also about several other principles, 
as illustrated in several examples in subsequent sections.

Table 22.2 
Example of Preservice Teachers’ Identification of Standards in a Lesson

Data Analysis and 
Probability

Students compute probabilities for simple compound events 
using such methods as organized lists, tree diagrams, and 
area models. This lesson particularly focuses on the area 
model. 

Problem Solving Students make conjectures and solve problems in real con-
texts. The lesson can be adapted to include more problem-
solving-based questions if necessary. 

Reasoning and 
Proof

Students make conjectures about the spinners and “making 
purple.” Then they test their conjectures during the activity. 

Communication Students discuss with their partners and the class why their 
actual probability was different from the theoretical  
probability. 

Connections The probability calculations in this unit build on fractions 
and percent. 

Representation Students create and interpret area models of probability. 
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The Learning Principle
 The Learning Principle emphasizes that “students must learn mathematics 
with understanding, actively building new knowledge from experience and prior 
knowledge” (NCTM 2000, p. 20). For teachers to attend to students’ learning, 
they must develop awareness of how mathematical understandings grow through 
particular experiences. Frykholm (2005) described how, as preservice teachers 
in his courses were challenged by the mathematics activities of NSF-funded 
materials, they began to develop new ideas about how children learn and how 
instruction might support that learning. Much as Arbaugh and Brown (2005) 
helped high school geometry teachers analyze the mathematical tasks used in 
their teaching, it is also worthwhile to engage preservice teachers in explicit con-
sideration of relationships between curriculum materials and students’ learning.

Anticipating diffi culties students might have with a curricular 
task
 Preservice teachers should have ample opportunities to consider students’ 
thinking, anticipate sources of common diffi culties, and ultimately develop re-
lationships between students’ thinking and pedagogy. When preservice teachers 
examine mathematics curriculum materials, they can begin to hypothesize about 
students’ thinking. This activity is similar to, although not as comprehensive as, 
what Roth McDuffi e and Mather (2009) have described as “mapping learning 
trajectories” (p. 311) in in-service teachers’ curricular reasoning.
 We asked our preservice teachers to consider the challenges students might 
face when working on a problem about surface area in an investigation from “Say 
It with Symbols” (Lappan et al. 2005). The problem asks students to write an 
equation for the relationship between the number (n) of rods in a stack of stag-
gered rods and the surface area of the stack. A stack consists of n equal-length 
rods that are staggered by the length of one unit rod. A 3-stack, using rods of 
length 5, is shown in fi gure 22.2. Whereas one rod of length 5 has surface area 
22 units ([4 × 5] + 2), the 2- and 3-stacks’ surface areas are 36 and 50 units, 
respectively. In the instance of rods of length 5, an n-stack has surface area 22 + 
14(n – 1).

Fig. 22.2. Stacked rods used in a surface area investigation 
from Lappan and others (2005)
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	 Figure 22.3 presents an excerpt from one preservice teacher’s hypotheses 
about students’ work on this task. This preservice teacher suggested that instruc-
tion could focus on “building upon what the student has already done” in the 
table of figure 22.3 to create “a more useful table from which to construct an 
expression using n.” Clearly y = 1 in each instance, and x can be replaced with 
the length of one rod. As this example suggests, by hypothesizing about students’ 
thinking and difficulties with particular curricular tasks, preservice teachers can 
begin to develop and consider strategies for using students’ thinking as a resource 
to guide instruction.

Fig. 22.3. A preservice teacher’s hypothesis about students’ work on a 
curricular task

The Assessment Principle
	 Assessment should be aligned with instructional goals: “Assessment should 
support the learning of important mathematics and furnish useful information 
to both teachers and students” (NCTM 2000, p. 22). It is often difficult for pre-
service teachers to appreciate that assessment should enhance students’ learning 
and guide teachers’ instructional decisions. Teacher educators are challenged to 
find ways to extend preservice teachers’ views of assessment to include formative 
and summative assessment that occurs before, during, and after instruction.

When writing an expression for the surface area of a staggered stack 
of n rods, students may feel the need to use multiple variables rather 
than simply using n to represent the number of rods in the stack.… An 
example of a table created by a student with this misconception might 
be as follows:

# of Rods Surface Area

1   4x + 2y

2   6x + 6y

3   8x + 10y

4 10x + 14y

n ???

The student is using x to represent the phrase “long sides” and y to 
represent the phrase “short sides” or “unit sides.” …The teacher could 
point out that the student is capable of fi nding the exact surface area 
for 1, 2, 3, or 4 rods by fi nding the length of the rods he or she is using 
and working from there. 
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Assessing students’ understandings of particular ideas from 
curricular activities
	 Peer-teaching experiences (mentioned in our discussion of the Teaching 
Principle) can include attention to assessment and its role in instruction. For ex-
ample, when we ask preservice teachers to use curriculum materials to design 
instruction for their peers, we expect them to make explicit in their lesson plans 
how they will obtain information about their peers’ knowledge and learning. Fig-
ure 22.4 presents items that a group of preservice teachers developed to assess 
students’ procedural and conceptual understanding of angle sums in polygons.

Fig. 22.4. Two assessment items developed by a group of preservice 
teachers

(1)  What is the angle sum of an n-sided polygon? Use your answer 
to evaluate a triangle, a pentagon, and an octagon. 

 Why this is a foundational problem that assesses main points 
from our lesson: 

  Our lesson led students to discover the formula for interior 
angle sums of a polygon. This formula is extremely useful in 
geometry, and it is important that students know it and are able 
to apply it. Simply asking students to apply the formula is not 
necessarily useful, though, so by having them demonstrate that 
they can apply it to various polygons, [we] ensure that they have 
learned the information meaningfully. 

(2) Use a visual method to show that the sum of interior angles in the 
polygon below is 1080 degrees. Explain the steps that you take. 

 Why this is a primary problem that assesses main points from 
our lesson: 

 Memorizing the formula for sums of angles may help students 
to solve problems quickly, but having them demonstrate this 
information in a visual manner tells us how well they actually 
understand why the formula makes sense. 
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	 Our preservice teachers seem to have more difficulty developing assessment 
items that require students to communicate understandings verbally and visually 
(as in the second problem of fig. 22.4) than those in which numerical answers 
are produced (as in the first problem). This curriculum-based task has provided 
a fruitful context for us to encourage preservice teachers to think beyond the 
development of “easy to grade” problems and toward those that invite students to 
articulate their knowledge in meaningful, useful ways. 

The Technology Principle
	 According to the Technology Principle, “Technology is essential in teach-
ing and learning mathematics; it influences the mathematics that is taught and 
enhances students’ learning” (p. 24). Most curriculum materials include sup-
plemental resources that use technology to enhance students’ learning. As the 
illustrations that follow suggest, work with these supplemental resources can 
support preservice teachers’ development of an appreciation for the Technology 
Principle.

Exploring technological tools that augment curriculum 
materials
	 The CPMP curriculum (Coxford et al. 2003) offers a suite of Java-based 
applications that support the algebra, geometry, statistics, and discrete mathe
matics strands of the curriculum.3 For example, for the discrete mathematics 
strand, tools are available for constructing, manipulating, and analyzing vertex-
edge graphs and their representations as adjacency matrices. Similar technology- 
support materials are available for other programs. Positive experiences with 
such technology can support preservice teachers’ development of mathematical 
knowledge for teaching and also influence the likelihood that preservice teachers 
will offer similar experiences to their future students.

Incorporating technology into lessons from curriculum 
materials
	 To help preservice teachers develop competencies with technological tools 
and the inclination to incorporate computers and calculators into their mathemat-
ics instruction, we encourage preservice teachers to identify ways that lessons in 
curriculum materials can be enhanced by the inclusion of technology (if technol-
ogy is not already included). When our preservice secondary school teachers 
develop lessons for peer teaching, we sometimes require that they incorporate 
computer or calculator technology. For example, in one lesson, preservice teach-
ers led their peers in using The Geometer’s Sketchpad to develop a formula for 

3. CPMP-Tools can be downloaded from http://www.wmich.edu/cpmp/CPMP-Tools/. 



Secondary School Mathematics Curriculum Materials as Tools� 335  

the sum of interior angles in polygons. In another lesson, teachers simulated coin 
tosses on graphing calculators (using ProbSim), responded to questions on the 
TI-Navigator system, and examined class data displayed on a SMART Board. 
Through activities such as these, preservice teachers can gain experience devel-
oping and carrying out technology-rich lessons while their peers have opportu-
nities to develop facility using graphing calculators and computers to complete 
mathematical investigations.

Conclusion
	 As we have illustrated in the foregoing sections, curriculum materials can 
be used in a wide variety of productive ways in mathematics teacher education 
courses. Although our chief aim in using instructional materials in our teacher 
education courses has been to support preservice teachers’ learning, we have 
found that the use of strategies such as those in table 22.1 has also fostered new 
insights about our students and their developing views about mathematics teach-
ing and learning. In particular, these activities have helped us identify areas in 
which preservice teachers appear to need additional support to improve their 
pedagogical understandings and skills. In this way, teacher education activities 
based on mathematics curriculum materials have served as useful tools for our 
own learning as well.
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Conducting Mathematics 
Curriculum Research: 
Challenges and Insights 

Paul Kehle  
Kelly K. McCormick

In this article we share our reflections on large-scale evaluation of school 
mathematics curricula. We identify challenges facing those who do curricu-

lum evaluation studies at any level or scale and offer insights resulting from our 
encounters with the challenges. We base our reflections on a recently completed 
five-year study of elementary school mathematics curricula.

Background: Context and Design  
of Study
	 Between 2002 and 2007, a research team based at Indiana University (IU) 
designed and conducted a longitudinal, comparative study of elementary school 
mathematics curricula. Our interest was in the relative performance of one set 
of curriculum materials; however, the study was conducted as an objective com-
parison. We conducted the research in three distinct geographical areas, and all 
schools were from districts whose students came from predominantly low- to 
average-income-level families.
	 Because of our desire to work with teachers experienced with the curricula 
they were using, we could not assign curricula randomly to create an experimental 
group and a control group. This constraint led us to use a quasiexperimental, 
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matched-comparison design in which we sought comparable schools, using dif-
ferent curricula, that were as closely matched as possible according to their 
geographic locations, socioeconomic profiles, ethnic and racial compositions, 
and academic achievement as measured by previous state standardized tests of 
mathematics and reading.
	 The longitudinal nature of the study meant we followed two cohorts of stu-
dents at each site through three years of schooling. Students in Cohort 1 entered 
the study in the fall of their first-grade year in 2003 and were followed through 
grades 2 and 3. Students in Cohort 2 entered the study in the fall of their third-
grade year in 2003 and were followed through grades 4 and 5. This parallel struc-
ture, with an overlap in grade 3, allowed us to examine performance across five 
years of curriculum use in just three years and permitted us to compare the dif-
ferent cohorts’ performances on the same grade 3 instruments. This longitudinal, 
parallel cohort structure worked extremely well and yielded much more insight 
than a shorter study would have.
	 The comparative aspect of the study focused on Cohort 2, since grade 3 
is typically when students are more able to demonstrate their understanding of 
mathematics on written assessments. The comparisons involved students’ per-
formance on assessments designed by the IU study team and on state standard-
ized tests. To adjust for differences in prior achievement, we also compared Co-
hort 2 students’ achievement on the Iowa Test of Basic Skills Survey instrument  
(ITBS-S).
	 Lastly, owing to limited resources and, more important, the goal of securing 
active participation, the study needed to be focused in scope. We did not want to 
burden or intrude unduly on the normal functioning of the schools, nor did we 
want to overwhelm students with additional testing, given the current emphasis 
on high-stakes tests. By limiting our study to select content areas (i.e., number 
and operations, algebraic reasoning), we reduced the invasiveness of the study 
and made it more likely that schools would participate.

Participants: Challenges and Insights
Participant Recruitment and Attrition
	 We encountered our first challenge at the onset of the study. Finding com-
parison schools in a couple of sites was particularly difficult because of a variety 
of factors mostly having to do with limited time and state- or district-level pri-
orities that precluded schools’ involvement in the study. Ultimately, comparison 
sites were found in only two of our three sites. Success in one of those sites was 
due largely to the ability to work in a district where curriculum adoptions were 
made at the school level and to the steady support of administrators among whom 
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there was no turnover during our study, a characteristic that was not shared at the 
other sites. Although we identified potential comparison schools at the third site, 
no schools were willing to participate in the study, because of other priorities at 
state and local levels, so no comparisons between curricula groups were possible 
for this site.
	 Many of the challenges we faced recruiting schools mirror those of other 
researchers; in the current climate of high-stakes testing, school personnel are 
more disinclined than ever to participate in research studies that might diminish 
teachers’ and students’ time and energy (Chval et al. 2006). For example, be-
fore data collection even began, we lost approximately one-third of our expected 
participant pool when a very large urban site (one of two we had planned in 
one geographical area) withdrew from the study because of administrative and 
curricular changes at the district level. Additionally, the site that participated in 
this area was not the one originally planned; that site also withdrew before the 
study began, because of changes in administrative personnel. Longitudinal stud-
ies depend highly on consistent support from teachers and administrators, and so 
turnover in personnel and changing local educational agendas are threats to such 
studies.
	 As challenging as participant recruitment is, attrition is the bane of longitu-
dinal studies, especially in many of the school settings of current interest (those 
engaging in innovative curriculum changes). Our study suffered significantly 
from unavoidable attrition due to the transient character of many of the com-
munities in which we worked (see table 23.1). For example, we lost 47 percent 
of the students at Site 2 in Cohort 1 over the course of the three years. Study at-
trition was not due to teachers’ or students’ withdrawing from the study; rather, 
it was created by students’ mobility and reflects the normal changes in student-
body composition faced by many urban schools owing to whole families’ or 
children’s moving from one school district to another. Moreover, the problems 
created for longitudinal studies by students’ mobility and attrition are echoed in 
the National Research Council’s (NRC 2004) report On Evaluating Curricular  
Effectiveness.

Table 23.1 
Percent Attrition by Site, Cohort, and Curriculum: Year 1 to Year 3

 
Cohort 1

Cohort 2 Curric.:  
A

Cohort 2 Curric.:  
Non-A

Site 1 27 30 10

Site 2 47 46 54

Site 3 46 42 N/A
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	 These high levels of attrition limit the applicability of our findings, since 
they reflect the achievement of only the students who remained in the same 
school for the three years of the study. Because we did not follow students en-
tering or leaving our study, our results do not shed light on their experiences 
learning mathematics. In these highly mobile environments, understanding these 
mobile students’ learning experiences is vital. We return to this issue briefly in 
our concluding section.
	 Another form of attrition affected our ability to understand exactly how the 
teachers implemented the curricula in the classroom. When we considered what 
to require of teachers, minimizing the study’s invasiveness was of paramount im-
portance; if a teacher withdrew from the study, we risked losing an entire class of 
students. Still, we needed to collect information from the teachers to characterize 
their use of their curriculum. To gauge the nature of curricular implementation, 
we collected curriculum logbooks (adapted from a University of Wisconsin study 
conducted by Thomas Romberg and Mary Shafer) and a pedagogical survey de-
veloped by Ross and others (2003). These instruments can be extremely valuable, 
but only if compliance on the part of participants is high.
	 Although the teachers participating in our study continued to use the intend-
ed curricula and helped collect student data, the number of curriculum logbooks 
and pedagogical surveys they returned declined over the course of the study. 
Despite monetary incentives to complete logbooks and surveys, we believe that 
changes in local-site coordinators, administrative pressures associated with other 
aspects of teachers’ workload, and shifting foci of attention at the school and 
district levels deterred teachers from completing the curriculum logs. As Chval 
and her colleagues (2006, pp. 161–62) indicated,

In the current educational context, additional pressures and responsibilities, 
such as preparing students for high-stakes assessments and documenting align-
ment with state and district standards, have placed additional time constraints 
on teachers’ schedules. It is not surprising, therefore, that participation in 
research activities that do not provide clear, direct, and immediate benefits 
for improving teachers’ practice and students’ learning is not at the top of a 
teacher’s priority list.

Researchers’ Responsibilities: Protecting 
Confidentiality and Minimizing Invasiveness
	 Chval and her colleagues (2006, p. 159) suggest, “The current context of 
high-stakes accountability and public access to information may, in fact, impede 
active collaboration between practitioners and researchers.” Indeed, in a climate 
of high-stakes accountability, researchers’ responsibility to protect teacher and 
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school confidentiality becomes even more imperative. However, with the swell in 
public access to information (e.g., more school-performance and school-profile 
data available on public Web sites), this task becomes increasingly more difficult. 
Researchers must take significant care in protecting the confidentiality of sub-
jects when reporting data.
	 Moreover, in such a high-stakes environment, teachers may be less inclined 
to accurately report implementation data for fear that this information will be 
shared with administrators. Thus, researchers have a responsibility to carefully 
consider what data they share with schools and likewise how schools might use 
the data.
	 In our own study, participating schools often requested classroom-level data, 
and we complied with these requests because these data were part of the incentive 
for their participation in the first place. However, we provided only the student-
level data stripped of other identifiers, thereby deemphasizing the connection to 
individual teachers. Despite receiving unsorted, anonymous data, local site coor-
dinators could, with some effort, reconstruct class-level data if they wished. As 
with all partnerships, we trusted them to not use the data to evaluate teachers—
something we promised teachers and reinforced with the site coordinators.
	 With the current climate, and perhaps always, researchers have an additional 
responsibility to minimize their invasiveness in schools. Just like invasive spe-
cies, researchers are nonindigenous to schools and can adversely affect the stu-
dents, teachers, and schools they are trying to study. Often during our study, we 
asked ourselves, “Why are we adding more tests and work to already stressed 
teachers and overly tested children?” Researchers need to be conscious of what 
they are asking of teachers and students; the quality of data with respect to the 
quantity of data must be carefully weighed.

Curriculum Implementation:  
Challenges and Insights
	 Despite a lack of compliance with maintaining curricular logbooks and com-
pleting pedagogical surveys, we gathered enough evidence to know that none of 
the curriculum materials used in the participating schools was used with a high 
degree of fidelity. This awareness resulted in a double bind—getting only enough 
data to know that implementation was low actually meant that we needed even 
more data to pin down what curriculum students were experiencing. Such addi-
tional data are even harder to obtain.
	 Even though we were working with districts believed to be high implement-
ers, we found that no site implemented the curriculum exclusively or with 100 
percent fidelity to what the authors of the particular curriculum intended. The 
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supplementing that took place was perhaps due to increased pressure to perform 
on state tests, resulting in more “teaching to the test” and using less of the ad-
opted curriculum materials, teachers’ personal preferences related to teaching 
styles, and so on. Nonetheless, the experiences of the schools in our study seem 
to be typical of those experienced by other researchers (Tarr et al. 2005).
	 In our opinion, the single most compelling reason that teachers altered the 
scope, sequence, and pedagogy of their curriculum was pressure associated with 
standardized tests, which we assume to be due in part to the No Child Left Be-
hind (NCLB 2001) mandates. For example, in the logbooks, we regularly found 
evidence of teachers’ using targeted worksheets in preparation for upcoming 
state assessments, and some teachers reported using their curriculum materials 
out of sequence because of approaching state tests. As Hursh (2007) indicated, 
because of pressure to raise test scores, particularly in urban school districts such 
as those participating in our study, teachers are compelled to teach the skills 
and knowledge that will be tested, often neglecting other, more complex aspects 
of the subject. Likewise, previous studies (Abrams, Pedulla, and Madaus 2003; 
Boyd 2008; Firestone, Monfils, and Schorr 2004) have found that high-stakes, 
mandated state testing can influence the content and instructional practices of 
teachers by narrowing the content that is taught and by changing instruction to 
practices that contradict those thought to be sound by teachers.
	 Schools are increasingly complex, busy places, and the experiences of teach-
ers and students are complicated accordingly. NCLB increased the amount of 
testing and the importance placed on this testing. In turn, increased professional 
development and other initiatives along with an increase in school-based educa-
tional research have all reduced the availability of sites for conducting research 
while simultaneously changing the nature of what we wish to study.

Change Is the Norm
	 In hindsight, we realized that, in addition to the impact of curriculum on 
students’ learning, a major part of what any curriculum study needs to document 
is change itself and how a curriculum interacts with this change, especially when 
rapid change is a part of school culture. For example, the following plausible 
sequence of changes could easily lead to a compromised implementation: more 
high-stakes student assessment causes more classroom use of previous state tests 
for practice problems, which results in more remediation and ability-level group-
ing; more emphasis on procedural fluency within ability groups might lead to 
more targeted professional development and filling of perceived curricular gaps. 
In the end, this professional development might be at odds with the philosophy 
of the curriculum. One change clearly documented since the onset of our study 
in 2002 is the increased stress placed on teachers due to increased testing of stu-
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dents, which we saw result in less time spent teaching and learning in the spirit 
of the adopted curriculum.

Fidelity to What?
	 Our thinking about issues of curricular fidelity was challenged by this study. 
As teacher educators, we advise our preservice students to adapt and complement 
the curricula they will be assigned to teach so as to effectively match their teach-
ing styles with their students’ prior knowledge, learning styles, interests, and 
experiences. Yet, as researchers in the midst of this evaluation study, we wanted 
teachers to “stick to” the intended curriculum so that we could study its impact. 
However, when the scope and sequence of a high-stakes state test does not fit the 
scope and sequence of the adopted curriculum materials, then fidelity to a cur-
riculum is called into question.
	 Curriculum authors themselves (Mokros, Russell, and Economopoloulos 
1995, p. 40) maintain that a curriculum—

… is not a prescription to be followed to the letter.… It is not cast in stone; 
it is not the final word…. A curriculum that works is a curriculum forever in 
process. If the curriculum works as it should, in every classroom where it is 
used, that teacher and those students will make it their own in ways that the 
curriculum authors could not possibly have anticipated.

However, the kinds of teachers’ and students’ modifications the authors have in 
mind are ones consistent with the overall philosophy of their curriculum.
	 Along with these authors, and with other scholars (e.g., Remillard and  
Bryans 2004), we, too, believe that the primary role of a written curriculum is to 
support teachers as they construct the curriculum they enact with their students. 
We have found it useful to begin thinking about fidelity to a child’s learning needs 
and opportunities and about fidelity to the teachable moments that arise. After all, 
what should matter most is that we are teaching children, not a curriculum nor 
even a subject. Do we really want to suppress students’ curiosity or engagement 
because the topic of their current interest is not treated until a later chapter or 
because the topic will not appear on the upcoming test? As Boaler (2008, p. 88) 
notes, we believe that often in schools “the excitement about learning pulls in 
one direction; covering the material that will be on the test pulls in the other. The 
elimination of powerful learning experiences because they cannot be reduced to 
testable knowledge is damaging education.”
	 Consider a class initially encountering multiplication and factors: who 
would seriously advise a teacher to ignore students who get excited about how 
some numbers are only the products of themselves and 1? Even if prime numbers 
are not on the syllabus for that class, teachers should have the freedom to table 
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their plans to pursue students’ observations. Respecting and nurturing students’ 
ownership and interest in core mathematical ideas, whenever they arise, will have 
positive payoffs when it comes to other topics as well. The biggest payoff might 
be in increased involvement of students in their own learning—helping them take 
steps toward becoming more independent inquirers.
	 Our vision is of a classroom guided by a sound philosophy of teaching and 
learning but not dominated by concern for a testing schedule, fidelity to a cur-
riculum, an obsession with one style of teaching, or a narrow focus on a child in 
isolation. An effective classroom will balance all these issues in a way that yields 
the most effective learning in the moment while connecting such moments to one 
another coherently.
	 Perhaps a more important concept than fidelity is that of integrity. In this 
context, integrity refers to the mutual coordination and support of several dis-
parate elements in the classroom, distinct from a more exclusive concern with 
fidelity to one element. In discussions with other scholars, integrity emerged as a 
goal we now have for children’s mathematics education. Beyond a simple seman-
tic difference, we see implicit in integrity the need to attend to multiple facets of 
classroom teaching and learning, and among those considered must be the child. 
In a review of the ways researchers have defined, conceptualized, and measured 
fidelity of curricular implementation, O’Donnell (2008) notes that fidelity over-
laps with integrity and other related constructs. What is absent in the work she 
reviews, and more generally in the field, is a focus on the role of the child. As 
only one example, researchers should consider how well a curriculum and its 
implementation support and connect with children’s natural curiosities and ways 
of thinking in situ.
	 The appeal for us is that “integrity” implies the integration or coordination 
of multiple components all working together toward some end without privileg-
ing one component above the others—and certainly it implies not losing sight of 
the child. The intent is not that any one component—say, curriculum—should 
become unimportant. Certainly it is not true that the underlying philosophy of a 
curriculum and its broad structure should fade into the background. Instead, we 
believe that the effectiveness of a curriculum must be weighed in complex rela-
tion to multiple other factors. It should not be enough to assume that a curriculum 
is “childproof ” and designed to be developmentally appropriate.
	 All factors need to be considered in concert with one another. If we adopt 
this perspective, it drives the need for much more thorough, multimethod re-
search studies of mathematical learning and not simply of curricula in isolation. 
Of course, this goal creates even more complexity and tension with the desire to 
reduce invasiveness and increase numbers of participants. The value of such thor-
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ough studies seems to be worth careful, cooperative work on the parts of schools, 
teachers, and researchers.

Instrumentation: Challenges and  
Insights
Curricular Neutrality and Value-Added Benefits 
	 We conducted our study with the goal of designing and using student as-
sessments that were neutral with respect to curriculum, in the interest both of 
providing a fair assessment across schools and curricula and of recruiting and 
maintaining participants. Who would participate in a study that uses instruments 
that favor the use of a particular curriculum? Thus, we field-tested the potential 
tasks and instruments prior to use with the participants, using a range of cur-
ricula similar to that represented by the schools in our study. At the same time, 
we solicited feedback from teachers to confirm that the instruments were neutral 
with respect to curriculum. Consultation with our advisory board also confirmed 
that the instruments did not favor one curriculum or another and in fact tested for 
knowledge and skills appropriate to the respective grade levels.
	 One insight we gained from this study is that different curricula have differ-
ent learning objectives and therefore may produce very different capabilities in 
students. An instrument that is neutral winds up testing only the objectives com-
mon to all the curricula being studied. Such an instrument risks missing unique, 
value-added benefits that a particular curriculum might provide.
	 In contrast with the advice of our advisory board, one scholar questioned 
the emphasis on instruments that are neutral with respect to curriculum. To de-
tect evidence of the value added by a particular curriculum, perhaps assessments 
need to include tasks explicitly designed to elicit the sorts of understandings 
that neutral instruments fail to reveal. This point is well taken but challenging to 
implement. The challenge comes in getting all schools in a study to agree to a test 
that they might perceive as biased against their students and curriculum.
	 Obtaining and maintaining study participants was difficult enough with-
out the additional obstacle of convincing them to administer tests that assessed 
knowledge not attended to in their curriculum. A challenge for future studies is to 
secure such permission, or to design tasks that are both neutral to curriculum and 
able to reveal depths of understanding that only one curriculum might cultivate. 
Another option would be to develop a test, for use in a comparative study, with 
tasks that are explicitly tied to each curriculum represented in the study. In short, 
in designing a test, researchers should intentionally bias different tasks in favor 
of different curricula so that for any one student, the test includes both items 
biased in the student’s favor and items biased against the student’s favor. Analysis 
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could then confirm the degree to which each curriculum succeeds in its intended 
goals relative to similar and different emphases of the other curricula.

Thought-Revealing Tasks
	 Regardless of the position one takes on the role of curriculum-specific tasks 
in curriculum studies, one goal should be the use of tasks that reveal as much as 
possible about students’ understanding of the mathematical concepts and proce-
dures being assessed. Such thought-revealing tasks are difficult to write because 
of the tension between wanting to prompt students to share their thinking on 
specific concepts and procedures and the desire to not lead them to think about 
problems in a specific way. Field testing is invaluable in helping identify tasks 
that effectively capture detail about students’ mathematical understandings.
	 Beyond this tension lies another challenge of the typical short, written as-
sessments that most curriculum studies use in an attempt to balance data col-
lection with invasiveness. In brief, the problem with thought-revealing tasks is 
that they reveal only some of the student’s thinking. Many times, on coding the 
written work of students, we desperately wanted to interview the student to learn 
in much greater detail what in fact he or she was thinking about the mathematical 
concepts and procedures we were trying to assess. As Black and Wiliam (1998, 
p. 148) noted, “Sampling pupils’ achievement by means of short exercises taken 
under the conditions of formal testing is fraught with dangers. It is now clear 
that performance in any task varies with the context in which it is presented.” For 
example, consider the work of the same student on these two tasks.

	 Task A: Jake has 6 bags of rocks, and each bag has 4 rocks in it. Rose 
has 4 bags of rocks, and each bag has 6 rocks in it. Who has the most 
rocks in all, or do they have the same number of rocks?

	 Task B: River Park has 78 trees, and each tree has 324 birds in it. Lake 
Park has 324 trees, and each tree has 78 birds in it. Which park has the 
most birds in all? Or are the numbers of birds the same?

	 When prompted for an answer and an explanation of “how do you know?”, 
the student replied for Task A that the numbers of rocks would be “the same” 
because they are “just opposite,” referring to the ordering of the two factors. 
This response was representative of what we expected as a solid demonstration 
of understanding of multiplicative commutativity for a third-grade student. So 
you can imagine our surprise when a few pages later (on the same field-test in-
strument), the same student replied that in Task B the numbers of birds are “dif-
ferent” because “one park has 324 trees and one has 78 trees.” In the midst of a 
large-scale curriculum evaluation study, and despite wanting to pursue this issue 
further, we could not take time to tease out this student’s thinking. Obviously, 
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revealing thoughts and studying them is a valuable priority, but it can compli-
cate a “simple” evaluation study when unexpected and inconsistent thoughts are  
revealed.

Implications for Future Studies
	 Beyond raising the complex challenges identified, we offer a few, mostly 
practical or “hindsight” observations to guide future studies of curriculum.

•	 Begin with much larger initial numbers of sites and participants; larger 
initial numbers will yield ending numbers, after attrition, capable of 
delivering more statistical power. Our high attrition rates made more 
powerful analyses impossible, and they also limited the power of the 
analyses that we could perform.

•	 Allocate more funds for regular site visits by the study team that in-
clude observations and follow-up interviews with participating teach-
ers to gain a more accurate understanding of the curriculum as imple-
mented. As the NRC (2004, p. 114) noted, “Measuring implementation 
can be costly for large-scale comparative studies; however, . . . imple-
mentation is a key factor in determining effectiveness.”

•	 Budget to pay participating teachers more for completion of cur-
riculum logs, observations, and interviews to secure higher compli-
ance with study protocols. We offered $100 for each of two ten-day 
logbooks and $50 for the twenty-item pedagogical survey. We would 
recommend $400 per logbook, $200 per class observation and follow-
up interview, $100 for the pedagogical survey, and $50 for each test 
administration. Per teacher, this would total $1,400 a year (two log-
books staggered with two observations or interviews, a year-end sur-
vey, and two test administrations). On the basis of conversations with 
teachers, we think that this increased compensation will more likely 
ensure compliance and serious participation in the study. The daily life 
of teachers is so demanding that a significant investment is needed to 
honor them as professionals and simply to attract their attention.

•	 Limit the scope of the study even further in content examined, commit 
to increased days of testing, or use a sampling approach where stu-
dents do not all take the same test. Our tests were long, and the use of 
free-response items in a culture where students are being asked more 
often to “show their work” and to show more of it leads to longer tests. 
An alternative would be to include some multiple-choice tasks; how-
ever, these kinds of tasks dominate state standardized tests, and a study 
would probably not want to duplicate such data.
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•	 Combine a study of achievement with a study of professional develop-
ment and pedagogy; information could be gathered to guide both types 
of studies for the same investment of overhead (each study would be 
working with the same participants). Such a comprehensive study 
of teachers, students, curricula, professional development, and so on 
would go a long way to answering the criticism of not using a random-
ized design, because it could gain validity through being a study of 
thoroughly natural situations. Such a comprehensive study also would 
capture the authentic environment in which curriculum implementa-
tion is embedded and with which it interacts.

•	 Most of our assessment tasks worked well for our purposes; however, 
some stood out as being particularly useful for large-scale studies of 
curricula. In determining a task’s effectiveness, we considered the 
task’s topical and developmental appropriateness, its ability to reveal 
students’ reasoning, and the feasibility of reliably coding the students’ 
work it elicited. All three of these criteria are vital in maintaining a 
study’s worth and feasibility.

Additional Insights: Coordinating 
Curriculum Implementation with 
Professional Development
	 Although our study did not focus on issues of professional development or 
on the details of curricular implementation, we can offer some perhaps obvious 
but vital observations about these issues as they relate to curriculum adoptions 
by school districts similar to those we studied.

•	 To the extent that legislation such as NCLB maintains pressure on 
teachers to “teach to a test” and to the extent that state tests are devel-
oped independently of the curriculum adopted at the district or school 
level, curriculum authors should consider the necessity of rearranging 
the sequence of units, both within and across grade levels, and provide 
guidance accordingly.

•	 In districts with high student mobility, teachers need plans for helping 
new students who are also new to the curriculum adjust to mathemat-
ics lessons that might appear to be review or completely disconnected 
from their previous work. As obvious as this need is, it forcefully as-
serted itself on us through the high rates of attrition in our study.

•	 Be alert for before- or after-school mathematics “enrichment” pro-
grams. Such programs might or might not be true enrichment, and 
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in either instance, the philosophy that guides them might not be con-
sistent with that of the students’ curriculum or classroom instruction. 
Work with teachers and curriculum coordinators in the district to 
ensure that the primary mathematics instruction, remediation, enrich-
ment, and tutoring approaches do not work toward conflicting goals.

•	 The active, quickly shifting, and increasingly demanding contexts of 
teachers’ work make both longitudinal studies and professional devel-
opment difficult to sustain. In such turbulent environments, the turnover 
of just one primary advocate for a curriculum can have schoolwide 
and districtwide consequences. To keep pace with accelerating rates of 
change, professional development must be sustained even as it responds 
and adapts to changes in the local school or district environment.
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The Influence of Curriculum  
on Students’ Learning

Mary Kay Stein 
Margaret S. Smith

The purpose of this article is to review research that fosters insight into 
the influence of curriculum on students’ learning, often called curricular 

effectiveness. For a variety of reasons, the past decade has witnessed grow-
ing interest in the question of curricular effectiveness. First, the accountability 
provisions of No Child Left Behind (NCLB) have made administrators keenly 
aware of every dip and rise in students’ performance and eager consumers of 
programs that “work.” Second, NCLB has restricted the use of federal monies 
to instructional programs backed by scientific evidence of students’ learning 
(NCLB 2001), leaving many curriculum developers and publishers eager to 
prove that their materials can be counted on to produce increases in students’ 
performance. Last but not least, more varied curricular materials are available 
to select from than ever before. National Science Foundation (NSF)-funded 
curricula—embodying a different vision of what it means to learn mathemat-
ics—vie for adoption committees’ attention alongside publisher-generated 

This article draws on an article prepared for the Second Handbook of Research on  
Mathematics Teaching and Learning (Stein, Remillard, and Smith 2007). The work herein 
was supported with a grant from the National Science Foundation (IERI Grant REC- 
0228343). The content or opinions expressed herein do not necessarily reflect the views of 
the National Science Foundation or any other agency of the U.S. government.
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textbooks. Although both NSF-funded and publisher-generated curricula aim 
to develop some conceptual understanding and some procedural competence, 
they place different emphases on the two. NSF-funded curricula generally in-
clude more focus on conceptual development and the development of reason-
ing, problem solving, and communication skills, whereas publisher-generated 
curricula generally include more focus on the development of procedural flu-
ency.
	 The wider variety of curricula now on the market means that schools and 
districts, perhaps for the first time ever, actually have a choice among different 
approaches to what mathematics is taught and how it is taught in their class-
rooms. If curricula are actually effective in developing the kind of knowledge 
and skills they endorse, then it would follow that decisions about what cur-
riculum to adopt should depend on an organization’s values with respect to the 
kinds of student outcomes they wish to promote.
	 Despite this ripe environment for definitive answers to the question of cur-
ricular effectiveness, determining the impact of curricular materials on stu-
dents’ learning has proved to be a deceptively challenging task. The frame-
work illustrated in figure 24.1 (Stein, Remillard, and Smith 2007) helps explain 
why.

Fig. 24.1. Temporal phases of curriculum use 
Figure 1.
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	 As shown in figure 24.1, curriculum does not influence students’ learning 
directly but rather, unfolds in a series of temporal phases from the printed page 
(the written curriculum), to the teachers’ plans for instruction (the intended 
curriculum1), to the actual implementation of curriculum-based tasks in the 
classroom (the enacted curriculum).
	 The curriculum that students experience in the classroom is different from 
the curriculum that appears on the pages of a textbook. That is because between 
and within the phases shown in figure 24.1, interpretative and interactive pro-
cesses transform the nature of the curriculum. Between the written and intend-
ed phases, teachers bring their own understandings, beliefs, and goals to their 
reading of the written curriculum and, in the process, transform it into a plan 
that they believe will work in their classroom. Within the enactment phase, the 
teacher and the students, in interaction with one another, bring the curriculum 
to life and, in the process, create something different from what could exist on 
the pages of the book or in the teacher’s mind or lesson plan.
	 We believe that the best way to understand how a curriculum influences 
students’ learning is to observe its unfolding through the various phases, pay-
ing particular attention to how the curriculum is enacted in the classroom as 
the proximal determinant of students’ learning. Researchers, however, gener-
ally do not have the resources to do so. Although some studies have examined 
transformations between two adjacent phases or during the enactment phase 
(see studies in sections 2, 3, and 4 of Stein, Remillard, and Smith [2007]), we 
know of no published studies that have traced curriculum materials through all 
phases and on to students’ learning.
	 Because such comprehensive studies do not exist, we examine two types of 
available research that may be informative. First, we focus on research studies 
that aim to identify a direct relationship between curriculum materials and stu-
dents’ learning. Returning to figure 24.1, the reader might imagine a line drawn 
between the “written curriculum” and “students’ learning” as a way to char-
acterize most of these studies. Although some of the studies in this category 
acknowledge the fact that curriculum materials are not self-enacting, they do 
not highlight directly the enactment process; instead they focus on the relation-
ship between the adoption of written materials and student outcomes. Second, 
we review a smaller set of studies that have examined the relationship between 
the enacted curriculum and students’ learning. As we shall see, these studies 
provide information regarding how curriculum influences students’ learning 

1. Note that the phrase “intended curriculum” is used differently than in other sources; 
here, it means what the teacher intends for the lesson (i.e., the teacher’s plan).
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and, by doing so, shed additional insight into the question of curricular effec-
tiveness.2

The Relationship between the Written 
Curriculum and Students’ Learning
	 Few studies have been conducted of the effectiveness of publisher-generated 
curricula (NRC 2004). The earliest studies to appear regarding the effectiveness 
of NSF-funded curricula came from the curriculum developers who had produced 
the materials. On the whole, these early evaluations were promising, suggesting 
that students taught with these materials demonstrated at least comparable levels 
of computational learning as students taught with publisher-generated curricula 
and superior understanding of concepts and problem solving (Senk and Thompson  
2003).
	 That said, critics raised a host of concerns regarding these early studies, the 
biggest of which was the fact that the curriculum designers themselves were of-
ten the primary evaluators of their curricula, raising issues of conflict of interest. 
In addition, critics noted that many of the studies were carried out in unusual cir-
cumstances. For example, the study of one curriculum included primarily teach-
ers who had received professional development from the curriculum developers 
themselves. Also, in many of the early studies, the materials were not always 
in their final forms or had not been used long enough to establish stable imple-
mentations. All these concerns meant that drawing strong conclusions based on 
any one of this early wave of studies was not possible, although the number of 
studies and the diversity of approaches represented in the Senk and Thompson 
volume might—for some readers—increase confidence in the general patterns 
that emerged. Others, however, demanded that independent researchers develop 
more rigorous methodologies with which to examine students’ learning, a discus-
sion to which we now turn.

2. In preparing this article, we started with the review of studies that appeared in an earlier 
review of how curriculum influences students’ learning prepared for the Second Hand-
book of Research on Mathematics Teaching and Learning (Stein, Remillard, and Smith 
2007). Because studies published through 2005 had been reviewed for that publication, we 
then conducted a search of articles published from 2005 to late 2008. We used such search 
terms as standards-based curriculum and students’ achievement, curriculum and students’ 
achievement, mathematics curriculum materials and students’ achievement, written cur-
riculum and students’ achievement, and research review of curriculum materials to search 
the databases of Google Scholar and JSTOR. We also conducted a hand search of par-
ticular journals from 2005 to the present, including Journal for Research in Mathematics 
Education, Mathematical Thinking and Learning, Educational Studies in Mathematics, 
and Journal of Mathematics Teacher Education.
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Comparative Studies Conducted by External 
Researchers
	 Questions of curricular effectiveness are best addressed through compara-
tive studies, that is, studies designed to answer the question “Is curriculum X 
effective compared with curriculum Y?” Although it may seem simple to evaluate 
whether one curriculum is better, worse, or no different from another, designing 
a study to do so is fraught with pitfalls and complications, leading a National 
Research Council (NRC) panel convened to examine evaluations of mathematics 
curricula to conclude that “comparative evaluation study is an evolving method-
ology” (NRC 2004, p. 96).
	 To start, each curriculum’s objectives must be well specified, and credible 
measures of students’ learning aligned with those objectives must be readily 
available. This can be particularly problematic with NSF-funded curricula that 
focus on conceptual understanding, thinking, reasoning, and problem solving—
outcomes for which the field has limited measures. Even when curricular ob-
jectives are well specified and appropriate measures are available, comparative 
studies between NSF-funded and publisher-generated curricula face another di-
lemma: Does one assess only the goals and topics that the two kinds of curricula 
have in common, or does one assess all students on all goals and topics, regard-
less of which curriculum they were exposed to? 
	 Another issue is determining how the curriculum materials were actually 
implemented in classrooms. One cannot say that a curriculum is or is not as-
sociated with students’ achievement unless one can be reasonably certain that it 
was implemented as intended by the curriculum developers. Nevertheless, claims 
about the effectiveness of one curriculum over another are commonly made, cit-
ing students’ achievement data but providing little or no data on the degree of 
implementation.
	 Given the limitations associated with comparative studies, the question natu-
rally arises: What claims can be made about the impact on students’ learning of 
various curricula? This question sits at the heart of the charge given to the NRC 
panel, and their conclusion was (NRC 2004, p. 3) that—

the corpus of evaluation studies as a whole across the 19 programs studied 
does not permit one to determine the effectiveness of individual programs 
with a high degree of certainty, due to the restricted number of studies for any 
particular curriculum, limitations in the array of methods used, and the uneven 
quality of the studies.

	 The report goes on to caution that the inconclusive finding of the panel 
should not be interpreted to mean that these curricula are ineffective, but instead 
that problems with the data or study designs—or both—prevented the panel from 
making confident judgments about their effectiveness.
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	 Although cautions regarding the effectiveness of a particular curriculum 
may be warranted, one can observe interesting patterns across several large-scale 
studies comparing achievement in classrooms using NSF-funded curricula with 
achievement in classrooms using publisher-generated curricula. Despite the dif-
ferences in methodologies, grades, and curricula examined, many of these stud-
ies have produced fairly consistent findings. The first is that students taught using 
NSF-funded curricula, compared with those taught using publisher-generated 
curricula, generally exhibited greater conceptual understanding and performed 
at higher levels with respect to problem solving (e.g., Boaler 1997; Huntley et al. 
2000; Thompson and Senk 2001). Second, these gains did not appear to come at 
the expense of those aspects of mathematics measured on more traditional stan-
dardized tests. Compared with students taught using publisher-generated curri-
cula, students who were taught using NSF-funded curricula generally performed 
at approximately the same level on standardized tests that assess mathematical 
skills and procedures (e.g., Riordan and Noyce 2001; Thompson and Senk 2001). 
The differences that occurred were usually not significant, and some show stu-
dents in classrooms using NSF-funded curriculum doing slightly better, whereas 
others show students in classrooms using publisher-generated curriculum doing 
slightly better. For example, students using the Core Plus Mathematics Project 
(an NSF-funded high school curriculum) outperformed others on tests of alge-
braic concepts set in real-world contexts, but the students taught using publisher-
generated textbooks outperformed those in a Core Plus classroom on tests of 
algebraic skills set in questions without contexts that did not allow calculators 
(Huntley et al. 2000). Unsurprisingly, students tend to do well on tests that match 
the approaches through which they have learned.

Comparisons among NSF-funded curricula
	 More recent studies have compared different NSF-funded curricula with 
one another under realistic conditions offered by districtwide adoptions. For ex-
ample, Harwell and his colleagues (2007) studied students’ learning in six dis-
tricts, three of which used the Core Plus Mathematics Project, two of which used 
Mathematics: Modeling Our World, and one of which used the Interactive Mathe
matics Program (all NSF-funded high school curricula). They found that, once 
background variables were taken into account (e.g., socioeconomic status, prior 
mathematics achievement), no differences were found in students’ scores across 
the three curricula on the multiple-choice and open-ended sections of the SAT-9. 
Similarly, Post and his colleagues (2008) found no significant differences be-
tween districtwide implementations of Connected Mathematics (three districts) 
and Math Thematics (two districts), both NSF-funded middle school curricula.
	 The similarity between the patterns of findings reported in Senk and  
Thompson (2003) and the findings of the larger-scale studies conducted by ex-
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ternal reviewers is striking: Students taught using NSF-funded curricula tended 
to hold their own on tests of computational skills and to outperform students 
taught with publisher-generated curricula on tests of thinking, reasoning, and 
conceptual understanding. This pattern of findings—not the findings of any one 
study—has prompted some to point to the overall effectiveness of NSF-funded 
curricula (e.g., Schoenfeld 2002).

Limitations of existing research
	 Despite these emerging patterns, it is important to acknowledge the ques-
tions that the foregoing studies cannot answer. Returning to the framework de-
picted in figure 24.1, the majority of the comparative studies cited did not collect 
data on how the various curricula were enacted in the classroom (the third box 
in the framework); none examined the way in which teachers engaged with the 
materials to create the intended curriculum (the second box in the framework). 
When implementation measures are included, the findings can become less clear. 
For example, Boaler and Staples (2008) studied algebra classes across three high 
schools, approximately half of which used publisher-generated textbooks and 
half of which used NSF-funded materials. On tests of algebra at the end of their 
first year of high school, students in the two groups performed at the same level, 
both in skills and in conceptual understanding. However, this was not an indica-
tion that the curricular approach did not matter, only that there was a need to look 
beyond curriculum to the ways in which teachers implemented them. Indeed, the 
most significant factor in comparisons of algebra achievement in this study was 
the teacher, with large variations between teachers within the same curriculum. 
The importance of individual teachers and their particular teaching decisions 
was also reported by Huntley and her colleagues (2000), who found that different 
classes using the same curriculum varied to a large degree in classroom imple-
mentation and students’ achievement.
	 As noted earlier, many scholars and policymakers have (implicitly) concep-
tualized the question behind student-outcome studies as the testing of a (causal) 
relationship between curricular materials (the written curriculum—the first box 
of fig. 24.1) and students’ learning (the final triangle in fig. 24.1). Our frame-
work, together with findings associated with most of the studies discussed here-
in, suggests, however, that such a conceptualization—although useful for some 
reasons—is incomplete. Although studies that focus on student outcomes can 
reveal whether a particular curriculum or type of curriculum achieved superior 
outcomes, they cannot shed light on how. However, a knowledge of how an effect 
was achieved is crucial for enhancing the field’s understanding of teaching and 
learning mathematics, for others who wish to implement the curriculum, and for 
designers hoping to improve the curriculum.
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How the Enacted Curriculum Influences 
Students’ Learning
	 In this section we examine the impact of curriculum on students’ learning by 
looking at the relationship between the enacted curriculum (the third box in fig. 
24.1) and what students appear to learn from their instructional experiences (the 
final triangle in fig. 24.1).3

	 Although a host of studies have analyzed the ways in which teachers and 
their students have enacted mathematical tasks or curricula (see Stein, Remillard,  
and Smith 2007), few studies have connected the curriculum (or tasks) as enacted 
to students’ learning or achievement. Several studies, however, provide evidence 
that the cognitive demands experienced by students, related to the instructional 
tasks with which they engage, shape students’ learning.

Maintenance of Cognitive Demand Matters
	  Evidence gathered across scores of classrooms in QUASAR middle schools 
has shown that students who performed best on a project assessment designed 
to measure thinking and reasoning processes were more often in classrooms in 
which tasks were enacted at high levels of cognitive demand (Stein and Lane 
1996), that is, classrooms characterized by sustained engagement of students in 
active inquiry and sense making (Stein, Grover, and Henningsen 1996). For stu-
dents in these classrooms, having the opportunity to work on challenging mathe
matical tasks in a supportive classroom environment translated into substantial 
learning gains.
	 The results of the 1999 TIMSS video study (Stigler and Hiebert 2004) pro-
vide additional evidence of the relationship between the cognitive demands of 
mathematical tasks and students’ achievement. In this study, a random sample 
of 100 eighth-grade mathematics classes from each of six countries (Australia, 
Czech Republic, Hong Kong, Japan, Netherlands, Switzerland) and the United 
States were videotaped during the 1999 school year.4 The 1999 study revealed 
that the higher-achieving countries implemented a greater percent of tasks that 
focused on concepts and connections among mathematical ideas (i.e., making 
connections) in ways that maintained the demands of the task. With the exception 
of Japan, higher-achieving countries did not use a greater percent of high-level 
tasks than in the United States. All other countries were, however, more suc-
cessful in not reducing these tasks into procedural exercises. Hence, the primary 

3. We have limited our discussion to studies that involve observational measures of in-
structional practices instead of those that rely solely on self-reported data.

4. The six countries were selected because each performed significantly higher than the 
United States on the TIMSS 1995 mathematics achievement test for eighth grade.
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distinguishing feature between instruction in the United States and instruction in 
high-achieving countries is that students in U.S. classrooms “rarely spend time 
engaged in the serious study of mathematical concepts” (Stigler and Hiebert 
2004, p. 16).
	 More recently, Boaler and Staples (2008) reported the results of a five-year 
longitudinal study of 700 students in three high schools. Students at one high 
school, Railside, used a curriculum designed by teachers around fundamental 
concepts (e.g., what is a linear function?) that featured group-worthy tasks drawn 
from such NSF-funded curricula as College Preparatory Mathematics and the 
Interactive Mathematics Program, as well as a textbook of activities that use al-
gebra manipulatives. The students at the other two high schools used publisher-
generated curricula. By the end of the second year, Railside students significantly 
outperformed all other students in a test of algebra and geometry. An important 
factor contributing to the success of students at Railside was the high cognitive 
demand of the curriculum and the teachers’ ability to maintain the level of de-
mand during enactment through questioning.

Learning environment matters
	 The results of a study of middle school curricula provide additional evi-
dence of the importance of the learning environment in students’ achievement. 
In this study, Tarr and his colleagues (2008) investigated the impact of three 
factors on students’ achievement: curriculum type (publisher-generated versus 
NSF-funded), the fidelity of curriculum implementation, and the nature of the 
learning environment.5 The study included more than 4200 students in grades 
6−8 from eleven middle schools across six states. The curricula included both 
NSF-funded curricula (i.e., Connected Mathematics, Mathematics in Context, 
and Math Thematics) and publisher-generated curricula (e.g., Addison Wesley, 
Glencoe, Harcourt Brace).
	 The study’s findings suggest that students’ achievement in mathematics can-
not be predicted solely by the type of curriculum used or by the fidelity of imple-
mentation of a curriculum. However, students’ achievement in mathematics can 
be predicted by the nature of the classroom environment. Specifically, a standards- 
based learning environment (SBLE) was associated with higher performance 
on an assessment of thinking, reasoning, and problem solving regardless of the 
curriculum being used. An SBLE, however, was more frequently found in class-
rooms that used NSF-funded curricula. Particularly interesting is the finding 
that achievement was highest among students who experienced an NSF-funded 

5. The authors use the term standards-based learning environment (SBLE) to describe 
classrooms where students make conjectures and explain responses, and where teachers 
use students’ thinking as the basis for instruction and encourage multiple perspectives and 
strategies.
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curriculum in an SBLE over two consecutive years. These findings suggest that 
NSF-funded curricula are particularly effective when normative practices are in 
place that promote understanding, that is, when learning is viewed as problem 
solving, alternative strategies and perspectives are discussed publicly, and ex-
planations are given to support conjectures and approaches. Interestingly, these 
same practices have been found to be present in classrooms in which high cogni-
tive demand is maintained (Henningsen and Stein 1997).
	 Evidence appears to be accumulating, then, that specific classroom-based 
factors mediate the ways in which curriculum affects students’ learning. In par-
ticular, NSF-funded curricula (or high-cognitive-demand tasks such as those 
likely to be found in NSF-funded curricula) can be implemented in a manner 
very different from the intentions of the developers. By focusing on tasks, dis-
course, and students’ opportunities to learn—rather than, or in addition to, the 
written curriculum—the studies reviewed in this section uncovered the mecha-
nisms by which curricula improve students’ performance. Moreover, they offer 
explanations for why two different classrooms using the same curriculum might 
result in different levels of student performance and thus are a necessary comple-
ment to the studies reviewed in the first section of this article.

Summary and Conclusions
	 The pattern of findings associated with the comparative, mostly quantitative 
research discussed in the first section suggests that the differences between NSF-
funded and publisher-generated curricula matter, at least with respect to how 
much computational and conceptual knowledge that students gain relative to one 
another using the two kinds of curricula. Students taught using NSF-funded cur-
ricula tend to “keep up” with their publisher-generated counterparts with respect 
to computational knowledge but to surpass them in conceptual knowledge and 
their ability to solve nonroutine problems. However, all students tend to do best 
on tests that align with the way in which they have been taught, leading to a slight 
edge for students taught with a publisher-generated curriculum on traditional 
standardized tests and a more considerable edge for students taught with NSF-
funded curricula on measures of thinking, reasoning, and problem solving.
	 These findings point to the role that healthy discussions of values must play 
in decisions to adopt one curriculum over another (Hiebert 1999). Administrators 
and teachers need to pose to themselves such questions as the following:

•	 What kinds of knowledge and skills will best prepare our students for 
their most likely futures?

•	 How much repetition and diligent practice do students need to become 
procedurally fluent?
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•	 What is the best way to ensure that students can recognize and deal 
with complexity?

	 The findings on curricular enactment and students’ achievement point to the 
crucial role of the teacher in successful implementation of NSF-funded curricula. 
Thus, adoption committees need to take into account how teachers will be support-
ed for teaching in more complex ways, posing such questions as the following:

•	 What kinds of resources is our district willing to contribute to profes-
sional development?

•	 In particular, how will our teachers be supported through the long, 
often arduous process of trying out and refining new practices in their 
classrooms?

Developing truthful and agreed-on answers to questions like these can be challeng-
ing but worthwhile because the answers furnish a compass for decision making.
	 The framework presented in figure 24.1 can provide a lens through which to 
consider the enactment of curriculum, its impact on students, and the factors that 
can influence the ways in which the curriculum can be transformed as teachers 
plan for and enact instruction in their classrooms. The framework serves as a re-
minder that the way in which the curriculum is used matters most and ultimately 
determines what is learned.
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